Skip to main content
Log in

The disynaptic group I inhibition between wrist flexor and extensor muscles revisited in humans

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The present studies are designed to further characterise the interneuronal pathway mediating the disynaptic reciprocal group I inhibition between flexors and extensors at the wrist and the elbow levels in humans. In the first series of experiments, we compared the electrical threshold of the reciprocal group I inhibition at the wrist and the elbow level after a prolonged vibration aimed at raising the electrical threshold of the antagonistic activated Ia afferents. Prolonged vibration to the ‘conditioning’ tendon, which raised significantly the electrical threshold of the inhibition at the elbow level, did not alter it at the wrist level. These results suggest that the dominant input to the relevant interneurones is Ia in origin at the elbow level but Ib in origin at the wrist level. In the second series of experiments, using the spatial facilitation method, we compared the effects on the post-stimulus time histograms of single voluntarily activated motor units of two volleys delivered both separately and together to group I afferents in the nerves supplying the homonymous and antagonistic muscles. At the wrist, but not at the elbow level, the peak of homonymous monosynaptic group I excitation was reduced on combined stimulation, although the antagonistic IPSP was just at the threshold. Because the suppression did not involve the initial bins of the peak, it is argued that the suppression is not due to presynaptic inhibition of Ia terminals, but probably reflects convergence between the homonymous and antagonistic volleys onto the interneurones mediating the disynaptic inhibition. Taken together with the previously reported effects of recurrent inhibition on reciprocal inhibition, these results suggest that inhibition between flexors and extensors is differently organised at the elbow (reciprocal Ia inhibition) and the wrist (non-reciprocal group I inhibition) levels. It is argued that the particular connectivity at the wrist level might correspond to some functional requirements at this ball joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aymard C, Chia L, Katz R, Lafitte C, Pénicaud A (1995) Reciprocal inhibition between wrist flexors and extensors in man: a new set of interneurones? J Physiol 487:221–235

    PubMed  CAS  Google Scholar 

  • Aymard C, Decchi B, Katz R, Lafitte C, Pénicaud A, Raoul S, Rossi A (1997) Recurrent inhibition between motor nuclei innervating opposing wrist muscles in the human upper limb. J Physiol 499:267–282

    PubMed  CAS  Google Scholar 

  • Baldissera F, Campadelli P, Cavallari P (1983) Inhibition of H-reflex in wrist flexors by group I afferents in the radial nerve. Electroencephalogr Clin Neurophysiol 23:187–193

    CAS  Google Scholar 

  • Baldissera F, Cavallari P, Fournier E, Pierrot-Deseilligny E, Shindo M (1987) Evidence for mutual inhibition of opposite Ia interneurones in the human upper limb. Exp Brain Res 66:106–114

    Article  PubMed  CAS  Google Scholar 

  • Baret M, Katz R, Lamy JC, Pénicaud A, Wargon I (2003) Evidence for recurrent inhibition of reciprocal inhibition from soleus to tibialis anterior in man. Exp Brain Res 152:133–136

    Article  PubMed  CAS  Google Scholar 

  • Berardelli A, Day BL, Marsden CD, Rothwell JC (1987) Evidence favouring presynaptic inhibition between antagonist muscle afferents in the human forearm. J Physiol 391:71–83

    PubMed  CAS  Google Scholar 

  • Burke D, Hagbarth KE, Löfstedt L, Wallin BG (1976) The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol 261:673–693

    PubMed  CAS  Google Scholar 

  • Burke D, Hagbarth KE, Löfstedt L (1978) Muscle spindle activity in man during shortening and lengthening contractions. J Physiol 277:131–142

    PubMed  CAS  Google Scholar 

  • Burke D, Gandevia SC, McKeon B (1983) The afferent volleys responsible for spinal proprioceptive reflexes in man. J Physiol 339:535–552

    PubMed  CAS  Google Scholar 

  • Burke D, Gandevia SC, McKeon B (1984) Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex. J Neurophysiol 52:435–448

    PubMed  CAS  Google Scholar 

  • Cavallari P, Katz R (1989) Pattern of projections of group I afferents from forearm muscles to motoneurones supplying biceps and triceps muscles in man. Exp Brain Res 78:465–478

    Article  PubMed  CAS  Google Scholar 

  • Cavallari P, Fournier E, Katz R, Pierrot-Deseilligny E, Shindo M (1984) Changes in reciprocal Ia inhibition from wrist extensors to wrist flexors during voluntary movements in man. Exp Brain Res 56:574–576

    Article  PubMed  CAS  Google Scholar 

  • Cavallari P, Katz R, Pénicaud A (1992) Pattern of projections of group I afferents from elbow muscles to motoneurones supplying wrist muscles in man. Exp Brain Res 91:311–319

    Article  PubMed  CAS  Google Scholar 

  • Coppin CMC, Jack JJB, MacLennan CR (1970) A method for the selective electrical stimulation of tendon organ afferent fibres from the cat soleus muscle. J Physiol 210:18–20

    Google Scholar 

  • Crone C, Nielsen J (1994) Central control of disynaptic reciprocal inhibition in humans. Acta Physiol Scand 152:351–363

    Article  PubMed  CAS  Google Scholar 

  • Crone C, Hultborn H, Jespersen B, Nielsen J (1987) Reciprocal Ia inhibition between ankle flexors and extensors in man. J Physiol 389:163–185

    PubMed  CAS  Google Scholar 

  • Day BL, Rothwell JC, Marsden CD (1983) Transmission in the spinal Ia reciprocal inhibitory pathway preceding willed movements of the human wrist. Neurosci Lett 37:245–250

    Article  PubMed  CAS  Google Scholar 

  • Day BL, Marsden CD, Obeso JA, Rothwell JC (1984) Reciprocal inhibition between the muscles of the human forearm. J Physiol 349:519–534

    PubMed  CAS  Google Scholar 

  • Downes L, Ashby P, Bugaresti J (1995) Reflex effects from Golgi tendon organ (Ib) afferents are unchanged after spinal cord lesion in humans. Neurol 45:1720–1724

    PubMed  CAS  Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer Verlag, Berlin, pp 316

    Google Scholar 

  • Fetz EE, Jankowska E, Johannisson T, Lipski J (1979) Autogenetic inhibition of motoneurones by impulses in group Ia muscle spindle afferents. J Physiol 293:173–195

    PubMed  CAS  Google Scholar 

  • Fournier E, Meunier S, Pierrot-Deseilligny E, Shindo M (1986) Evidence for interneuronally mediated Ia excitatory effects to human quadriceps motoneurones. J Physiol 377:143–169

    PubMed  CAS  Google Scholar 

  • Hammar I, Slawinska U, Jankowska E (2002) A comparison of postactivation depression of synaptic actions evoked by different afferents and at different locations in the feline spinal cord. Exp Brain Res 145:126–129

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Jankowska E (1985) Source of input to interneurones mediating group I non-reciprocal inhibition of motoneurones in the cat. J Physiol 361:379–401

    PubMed  CAS  Google Scholar 

  • Heckman CJ, Condon MS, Hutton RS, Enoka RM (1984) Can Ib axons be selectively activated by electrical stimuli in human subjects? Exp Neurol 86:576–582

    Article  PubMed  CAS  Google Scholar 

  • Hultborn H (1976) Transmission in the pathway of reciprocal Ia inhibition to motoneurones and its control during the tonic reflex. In: Homma S (ed) Progress in brain research. Understanding the stretch reflex, vol 44. Elsevier, Amsterdam, pp 235–255

  • Hultborn H, Jankowska E, Lindström S (1971) Recurrent inhibition of interneurones monosynaptically activated from group Ia afferents. J Physiol 215:613–636

    PubMed  CAS  Google Scholar 

  • Hultborn H, Meunier S, Morin C, Pierrot-Deseilligny E (1987). Assessing changes in presynaptic inhibition of Ia fibres: a study in man and the cat. J Physiol 389:729–756

    PubMed  CAS  Google Scholar 

  • Iles JF, Pisini JV (1992) Cortical modulation of transmission in spinal reflex pathways of man. J Physiol 455:425–446

    PubMed  CAS  Google Scholar 

  • Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 38:335–378

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Lundberg A (1981) Interneurones in the spinal cord. TINS 4:230–233

    Google Scholar 

  • Katz R, Meunier S, Pierrot-Deseilligny E (1988) Changes in presynaptic inhibition of Ia fibres in man while standing. Brain 111:417–437

    Article  PubMed  Google Scholar 

  • Katz R, Pénicaud A, Rossi A (1991) Reciprocal Ia inhibition between elbow flexors and extensors in the human. J Physiol 437:269–286

    PubMed  CAS  Google Scholar 

  • Lamy JC, Wargon I, Baret M, Ben Smail D, Milani P, Raoul S, Pénicaud A, Katz R (2005) Post-activation depression in various group I spinal pathways in humans. Exp Brain Res DOI 10.1007/s00221-005-2360-4

  • Livingston RB, Paillard J, Tournay A Fessard A (1951) Plasticité d’une synergie musculaire dans l’exécution d’un mouvement volontaire chez l’Homme. J Physiol 43:605–619

    CAS  Google Scholar 

  • Lundberg A (1970) The excitatory control of the Ia inhibitory pathway. In: Andersen P, Janse JKS (eds) Excitatory synaptic mechanisms. Universitetforlaget, Oslo, pp 333–340

    Google Scholar 

  • Lundberg A (1975) The control of spinal mechanisms from the brain. In: Tower DB (ed) The nervous system. The basic neuroscience, vol 1. Raven press, New York, pp 253–265

  • Meunier S, Pierrot-Deseilligny E (1998) Cortical control of presynaptic inhibition of Ia afferents in humans. Exp Brain Res 119:415–426

    Article  PubMed  CAS  Google Scholar 

  • Morita H, Petersen N, Christensen LOD, Sinkjaer T, Nielsen J (1998) Sensitivity of H-reflexes and stretch reflexes to presynaptic inhibition in humans. J Neurophysiol 80:610–620

    PubMed  CAS  Google Scholar 

  • Nielsen J, Pierrot-Deseilligny E (1996) Evidence of facilitation of soleus-coupled Renshaw cells during voluntary co-contraction of antagonistic ankle muscles in man. J Physiol 493:603–611

    PubMed  CAS  Google Scholar 

  • Nielsen J, Sinkjær T, Toft E, Kagamihara Y (1994) Segmental reflexes and ankle joint stiffness during co-contraction of antagonistic ankle muscles in man. Exp Brain Res 102:350–358

    PubMed  CAS  Google Scholar 

  • Nielsen J, Crone C, Sinkjaer T, Toft E, Hultborn H (1995) Central control of reciprocal inhibition during fictive dorsiflexion in man. Exp Brain Res 104:99–106

    Article  PubMed  CAS  Google Scholar 

  • Pauvert V, Pierrot-Deseilligny E, Rothwell JC (1998) Role of spinal premotoneurones in mediating corticospinal input to forearm motoneurones in man. J Physiol 508:301–312

    Article  PubMed  CAS  Google Scholar 

  • Rossi A, Decchi B, Ginanneschi F (1999) Presynaptic excitability of group Ia fibres to muscle nociceptive stimulation in humans. Brain Res 818:12–22

    Article  PubMed  CAS  Google Scholar 

  • Rothwell JC, Day BL, Berardelli A, Marsden CD (1984) Effect of motor cortex stimulation on spinal interneurones in intact man. Exp Brain Res 54:382–384

    Article  PubMed  CAS  Google Scholar 

  • Schieppati M, Romano C, Gritti I (1990) Convergence of Ia fibres from synergistic and antagonistic muscles onto interneurones inhibitory to soleus in humans. J Physiol 431:365–377

    PubMed  CAS  Google Scholar 

  • Stephens JA, Usherwood TP, Garnett R (1976) Technique for studying synaptic connections of single motoneurones in man. Nature 263:343–344

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Professor E. Pierrot-Deseilligny for reading and commenting upon the manuscript. Our thanks are also due to M. Dodo for her unfailing assistance during the course of the experiments and G. Bard for typing the manuscript. This work was supported by grants from AP-HP, INSERM and MESR (unité de recherche mixte INSERM U731; UPMC) IRME and Institut Garches. Zaid Ghanim was supported by Ministère des Affaires Etrangères.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Katz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wargon, I., Lamy, J.C., Baret, M. et al. The disynaptic group I inhibition between wrist flexor and extensor muscles revisited in humans. Exp Brain Res 168, 203–217 (2006). https://doi.org/10.1007/s00221-005-0088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0088-9

Keywords

Navigation