Skip to main content
Log in

Diverse responses of single auditory afferent fibres to electrical stimulation of the inferior colliculus in guinea-pig

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Medial olivocochlear (MOC) neurons in the auditory brainstem project to the cochlea and inhibit cochlear neural output by their action on the cochlear outer hair cells. The function of the lateral olivocochlear (LOC) neurons, projecting to the auditory primary afferents is still under debate. Recent studies have suggested that the olivocochlear system can have frequency-specific, spatially restricted effects within the cochlea. It has been shown that the inferior colliculus (IC) projects to the MOC neurons in a tonotopic manner and that electrical stimulation of the IC can activate the MOC system, suppressing cochlear gross potentials. In addition, it has been shown that stimulation of the IC may be able to activate the LOC neurons. We investigated the effect of IC stimulation on single units in the cochlea of guinea-pigs and searched for evidence of spatially restricted effects of the MOC system and effects of the LOC system. We found a variety of effects on single units. About 40% of units were unchanged whereas others (53%) showed inhibitory effects, reflected in a rightward shift of their rate-level function, sometimes accompanied by a suppression of the spontaneous rate. About 18% of the inhibited neurons showed an increased spontaneous rate. In 5% of the units we observed an excitatory effect of IC stimulation, resulting in a leftward shift of the rate-level functions. We also found that the effect could vary greatly between units of the same and adjacent frequencies within a single animal. These results imply an involvement of another regulatory system besides the MOC system, possibly the LOC system, which acts directly on the primary afferents. These data also demonstrate that the olivocochlear system is capable of eliciting highly localized effects on different frequency regions in the cochlea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–C
Fig. 3A–F
Fig. 4A–F
Fig. 5A–C
Fig. 6

Similar content being viewed by others

References

  • Alder VA, Johnstone BM (1978) A new approach to the guinea pig auditory nerve. J Acoust Soc Am 64:684–687

    CAS  PubMed  Google Scholar 

  • Brown MC (1993) Fiber pathways and branching patterns of biocytin-labeled olivocochlear neuron in the mouse brainstem. J Comp Neurol 337:600–613

    CAS  PubMed  Google Scholar 

  • Brown MC, Nuttall AL (1984) Efferent control of cochlear inner hair cell responses in the guinea-pig. J Physiol 354:625–646

    CAS  PubMed  Google Scholar 

  • Brown MC, Pierce S, Berglund AM (1991) Cochlear-nucleus branches of thick (medial) olivocochlear fibers in the mouse: a cochleotopic projection. J Comp Neurol 303:300–315

    CAS  PubMed  Google Scholar 

  • Caicedo A, Herbert H (1993) Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat. J Comp Neurol 328:377–392

    CAS  PubMed  Google Scholar 

  • Desmedt JE (1962) Auditory-evoked potentials from cochlea to cortex as influenced by activation of the efferent olivocochlear bundle. J Acoust Soc Am 34:1478–1496

    Google Scholar 

  • Dewson JH (1968) Efferent olivocochlear bundle: some relationships to noise masking and to stimulus attenuation. J Neurophysiol 30:817–32

    Google Scholar 

  • Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73:309–373

    CAS  PubMed  Google Scholar 

  • Faye-Lund H (1986) Projection from the inferior colliculus to the superior olivary complex in the albino rat. Anat Embryol 175:35–52

    CAS  PubMed  Google Scholar 

  • Felix D, Ehrenberger K (1992) The efferent modulation of mammalian inner hair cell afferents. Hear Res 64:1–5

    Article  CAS  PubMed  Google Scholar 

  • Giraud AL, Collet L, Chery-Croze S, Magnan J, Chays A (1995) Evidence of a medial olivocochlear involvement in contralateral suppression of otoacoustic emissions in humans. Brain Res 705:15–23

    Article  CAS  PubMed  Google Scholar 

  • Giraud AL, Garnier S, Micheyl C, Lina G, Chays A, Chery-Croze S (1997) Auditory efferents involved in speech-in-noise intelligibility. Neuroreport 8:1779–1783

    CAS  PubMed  Google Scholar 

  • Groff JA, Liberman MC (2003) Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J Neurophysiol 90:3178–200

    PubMed  Google Scholar 

  • Guinan JJ Jr (1996) Physiology of olivocochlear efferents. In: Dallos P, Popper AN, Fay RR (eds) The cochlea. Spinger-Verlag, Berlin Heidelberg New York, pp. 435–502

  • Guinan JJ, Gifford ML (1988a) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. I. Rate-level functions. Hear Res 33:97–114

    Article  PubMed  Google Scholar 

  • Guinan JJ, Gifford ML (1988b) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. II. Spontaneous rate. Hear Res 33:115–128

    Article  PubMed  Google Scholar 

  • Guinan JJ, Gifford ML (1988c) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF. Hear Res 37:29–46

    Article  PubMed  Google Scholar 

  • Guinan JJ Jr, Stankovic KM (1996) Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory-nerve fibers. J Acoust Soc Am 100:1680–1690

    PubMed  Google Scholar 

  • Guinan JJ Jr, Warr WB, Norris BE (1984) Topographic organization of the olivocochlear projections from the lateral and medial zones of the superior olivary complex. J Comp Neurol 226:21–27

    PubMed  Google Scholar 

  • Hienz RD, Stiles P, May BJ (1998) Effects of bilateral olivocochlear lesions on vowel formant discrimination in cats. Hear Res 116:10–20

    Article  CAS  PubMed  Google Scholar 

  • Johnstone JR, Alder VA, Johnstone BM, Robertson D, Yates GK (1979) Cochlear action potential threshold and single unit thresholds. J Acoust Soc Am 65:254–257

    CAS  PubMed  Google Scholar 

  • Kemp DT, Souter M (1988) A new rapid component in the cochlear response to brief electrical efferent stimulation: CM and otoacoustic observations. Hear Res 34:49–62

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC (1978) Auditory-nerve responses from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455

    CAS  PubMed  Google Scholar 

  • Liberman MC (1990) Effects of chronic cochlear de-efferentation on auditory nerve response. Hear Res 49:209–223

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res 24:17–36

    Article  CAS  PubMed  Google Scholar 

  • Malmierca MS, Le Beau FEN, Rees A (1996) The topographical organization of descending projections from the central nucleus of the inferior colliculus in guinea pig. Hear Res 93:167–180

    Article  CAS  PubMed  Google Scholar 

  • May BJ, McQuone SJ (1995) Effects of bilateral lesions on pure-tone intensity discrimination in cats. Aud Neurosci 1:385–400

    Google Scholar 

  • McCue MP, Guinan JJ Jr (1994) Influence of efferent stimulation on acoustically responsive vestibular afferents in the cat. J Neurosci 14:6071–6083

    Google Scholar 

  • Mulders WHAM, Robertson D (2000) Effects on cochlear responses of activation of descending pathways from the inferior colliculus. Hear Res 149:11–23

    Article  CAS  PubMed  Google Scholar 

  • Mulders WHAM, Robertson D (2002) Inputs from the cochlea and the inferior colliculus converge on olivocochlear neurons. Hear Res 167: 206–213

    Article  CAS  PubMed  Google Scholar 

  • Mulders WHAM, Robertson D (2004) Dopaminergic olivocochlear neurons originate in the high frequency region of the lateral superior olive of guinea pigs. Hear Res 187:122–130

    Article  CAS  PubMed  Google Scholar 

  • Mulders WHAM, Winter IM, Robertson D (2002) Dual action of olivocochlear collaterals in the guinea pig cochlear nucleus. Hear Res 174:264–280

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Robertson D, Yates GK (1991) Rate-versus-level functions of primary auditory nerve fibres—evidence for square law behaviour of all fibre categories in the guinea pig. Hear Res 55:50–56

    Article  PubMed  Google Scholar 

  • Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332

    CAS  PubMed  Google Scholar 

  • Ota Y, Oliver DL, Dolan DF (2004) Frequency-specific effects on cochlear responses during activation of the inferior colliculus in the guinea pig. J Neurophysiol 91:2185–2193

    Article  CAS  PubMed  Google Scholar 

  • Patuzzi RB, Thompson ML (1991) Cochlear efferent neurones and protection against acoustic trauma, protection of outer hair cell receptor current and interanimal variability. Hear Res 54:45–58

    Article  CAS  PubMed  Google Scholar 

  • Popelar J, Mazelová J, Syka J (2002) Effects of electrical stimulation of the inferior colliculus on 2f1-f2 distortion product otoacoustic emissions in anesthetized guinea pigs. Hear Res 170:116–126

    Article  CAS  PubMed  Google Scholar 

  • Rajan R (1988a) Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters. J Neurophysiol 60:549–568

    CAS  PubMed  Google Scholar 

  • Rajan R (1988b) Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on the level of temporary threshold shifts. J Neurophysiol 60:569–579

    CAS  PubMed  Google Scholar 

  • Reiter ER, Liberman MC (1995) Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation. J Neurophysiol 73:506–514

    CAS  PubMed  Google Scholar 

  • Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hear Res 15:113–121

    Article  CAS  PubMed  Google Scholar 

  • Robertson D (1985) Brainstem location of efferent neurons projecting to the guinea pig cochlea. Hear Res 20:79–84

    Article  CAS  PubMed  Google Scholar 

  • Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurons in the guinea pig cochlea. Hear Res 20:63–77

    Article  CAS  PubMed  Google Scholar 

  • Robertson D, Anderson CJ, Cole KS (1987) Segregation of efferent projections to different turns of the guinea pig cochlea. Hear Res 25:69–76

    Article  CAS  PubMed  Google Scholar 

  • Ruel J, Nouvian R, d’Aldin CG, Pujol R, Eybalin M, Puel J-L (2001) Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur J Neurosci 14:977–986

    Article  CAS  PubMed  Google Scholar 

  • Ruggero MA, Rich NC (1991) Furosemide alters organ of Corti micromechanics: evidence for feedback of outer hair cells upon the basilar membrane. J. Neurosci 11:1057–1067

    CAS  Google Scholar 

  • Scharf B, Magnan J, Chays A (1997) On the role of the olivocochlear bundle in hearing: 16 case studies. Hear Res 103:101–122

    Article  CAS  PubMed  Google Scholar 

  • Schofield BR, Cant NB (1999) Descending auditory pathways: projections from the inferior colliculus contact superior olivary cells that project bilaterally to the cochlear nuclei. J Comp Neurol 409:210–223

    Article  CAS  PubMed  Google Scholar 

  • Thompson AM, Thompson GC (1993) Relationship of descending inferior colliculus projections to olivocochlear neurons. J Comp Neurol 335:402–412

    CAS  PubMed  Google Scholar 

  • Vetter DE, Mugnaini E (1992) Distribution and dendritic features of three groups of rat olivocochlear neurons. Anat Embryol 185:1–16

    CAS  PubMed  Google Scholar 

  • Vetter DE, Adams JC, Mugnaini E (1991) Chemically distinct rat olivocochlear neurons. Synapse 7:21–43

    CAS  PubMed  Google Scholar 

  • Vetter DE, Saldaña E, Mugnaini E (1993) Input from the inferior colliculus to medial olivocochlear neurons in the rat: a double label study with PHA-L and cholera toxin. Hear Res 70:173–186

    Article  CAS  PubMed  Google Scholar 

  • Walsh EJ, McGee J-A, McFadden SL, Liberman MC (1998) Long-term effects of sectioning the olivocochlear bundle in neonatal cats. J Neurosci 18:3859–3869

    CAS  PubMed  Google Scholar 

  • Warr WB, Guinan JJ (1979) Efferent innervation of the organ of Corti: two separate systems. Brain Res 173:152–155

    Article  CAS  PubMed  Google Scholar 

  • Warren EH III, Liberman MC (1989a) Effects of contralateral sound on auditory-nerve responses. I. Contributions of cochlear efferents. Hear Res 37:89–104

    Article  PubMed  Google Scholar 

  • Warren EH III, Liberman MC (1989b) Effects of contralateral sound on auditory-nerve responses. II. Dependence on stimulus variables. Hear Res 37:105–122

    Article  PubMed  Google Scholar 

  • White JS, Warr WB (1983) The dual origins of the olivocochlear bundle in the albino rat. J Comp Neurol 219:203–214

    CAS  PubMed  Google Scholar 

  • Wiederhold ML (1970) Variations in the effects of electrical stimulation of the crossed olivocochlear bundle on cat single auditory-nerve fiber responses to tone bursts. J Acoust Soc Am 48:966–977

    CAS  PubMed  Google Scholar 

  • Wiederhold ML, Kiang NY-S (1970) Effects of electrical stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965

    CAS  PubMed  Google Scholar 

  • Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hear Res 45:191–202

    Article  CAS  PubMed  Google Scholar 

  • Zheng XY, Henderson D, McFadden SL, Ding DL, Salvi RJ (1999) Auditory nerve fiber responses following chronic cochlear de-efferentation. J Comp Neurol 406:72–86

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Health and Medical Research Council (Australia), the Medical Health and Research Infrastructure Fund (Western Australia) and the University of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. A. M. Mulders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulders, W.H.A.M., Robertson, D. Diverse responses of single auditory afferent fibres to electrical stimulation of the inferior colliculus in guinea-pig. Exp Brain Res 160, 235–244 (2005). https://doi.org/10.1007/s00221-004-2003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2003-1

Keywords

Navigation