Skip to main content
Log in

Chemosensory additivity in trigeminal chemoreception as reflected by detection of mixtures

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A series of experiments probed into the degree of chemosensory detection additivity exhibited by mixtures of ethyl propanoate and heptanoate in terms of their trigeminal detectability via nasal pungency (i.e., irritation) and eye irritation. Nasal pungency was tested in subjects lacking a functional sense of smell (i.e., anosmics) to avoid olfactory biases. First, we built concentration-detection functions for each chemical and sensory endpoint. Second, we used the data from the functions to prepare mixtures of the two compounds in complementary proportions, and suitable single-chemical standards, all of which should be equally detectable under a rule of complete additivity, i.e., independence of detection. Third, we compared the experimentally obtained detectability with that expected under such rule. The outcome revealed that, at a low detectability level (but still above chance), the mixtures showed complete additivity for both trigeminal endpoints. At a high detectability level (but below perfect detection), the mixtures showed complete additivity for nasal pungency but less than complete additivity for eye irritation. In the context of previous studies, the results consolidate a picture of higher degree of detection additivity at perithreshold levels in trigeminal than in olfactory chemoreception. The outcome presents another line of evidence suggesting broader chemical tuning in chemesthesis compared to olfaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham MH, Weathersby PK (1994) Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues. J Pharm Sci 83:1450–1456

    CAS  PubMed  Google Scholar 

  • Abraham MH, Kumarsingh R, Cometto-Muñiz JE, Cain WS (1998a) An algorithm for nasal pungency thresholds in man. Arch Toxicol 72:227–232

    Article  CAS  PubMed  Google Scholar 

  • Abraham MH, Kumarsingh R, Cometto-Muñiz JE, Cain WS (1998b) Draize eye scores and eye irritation thresholds in man can be combined into one quantitative structure-activity relationship. Toxicol In Vitro 12:403–408

    Article  CAS  Google Scholar 

  • Abraham MH, Gola JMR, Cometto-Muniz JE, Cain WS (2001) The correlation and prediction of VOC thresholds for nasal pungency, eye irritation and odour in humans. Indoor Built Environ 10:252–257

    Article  CAS  Google Scholar 

  • Acosta MC, Tan ME, Belmonte C, Gallar J (2001) Sensations evoked by selective mechanical, chemical, and thermal stimulation of the conjunctiva and cornea. Invest Ophthalmol Vis Sci 42:2063–2067

    CAS  PubMed  Google Scholar 

  • Alarie Y, Nielsen GD, Abraham MH (1998) A theoretical approach to the Ferguson principle and its use with non-reactive and reactive airborne chemicals. Pharmacol Toxicol 83:270–279

    CAS  PubMed  Google Scholar 

  • Alimohammadi H, Silver WL (2000) Evidence for nicotinic acetylcholine receptors on nasal trigeminal nerve endings of the rat. Chem Senses 25:61–66

    CAS  PubMed  Google Scholar 

  • Bryant B, Silver WL (2000) Chemesthesis: the common chemical sense. In: Finger TE, Silver WL, Restrepo D (eds) The neurobiology of taste and smell, 2nd edn. Wiley-Liss, New York, pp 73–100

  • Cain WS (1989) Testing olfaction in a clinical setting. Ear Nose Throat J 68:316–328

    CAS  PubMed  Google Scholar 

  • Cassee FR, Arts JHE, Groten JP, Feron VJ (1996) Sensory irritation to mixtures of formaldehyde, acrolein, and acetaldehyde in rats. Arch Toxicol 70:329–337

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    CAS  PubMed  Google Scholar 

  • Cometto-Muñiz JE (2001) Physicochemical basis for odor and irritation potency of VOCs. In: Spengler JD, Samet J, McCarthy JF (eds) Indoor air quality handbook. McGraw-Hill, New York, pp 20.1–20.21

  • Cometto-Muñiz JE, Cain WS (1995) Relative sensitivity of the ocular trigeminal, nasal trigeminal, and olfactory systems to airborne chemicals. Chem Senses 20:191–198

    PubMed  Google Scholar 

  • Cometto-Muñiz JE, Cain WS, Hudnell HK (1997) Agonistic sensory effects of airborne chemicals in mixtures: odor, nasal pungency, and eye irritation. Percept Psychophys 59:665–674

    PubMed  Google Scholar 

  • Cometto-Muñiz JE, Cain WS, Abraham MH, Gola JMR (1999) Chemosensory detectability of 1-butanol and 2-heptanone singly and in binary mixtures. Physiol Behav 67:269–276

    Article  PubMed  Google Scholar 

  • Cometto-Muñiz JE, Cain WS, Hiraishi T, Abraham MH, Gola JMR (2000) Comparison of two stimulus-delivery systems for measurement of nasal pungency thresholds. Chem Senses 25:285–291

    Article  PubMed  Google Scholar 

  • Cometto-Muñiz JE, Cain WS, Abraham MH, Gola JMR (2001) Ocular and nasal trigeminal detection of butyl acetate and toluene presented singly and in mixtures. Toxicol Sci 63:233–244

    Article  PubMed  Google Scholar 

  • Cometto-Muñiz JE, Cain WS, Abraham MH (2002) Sensory detection of VOCs singly and in mixtures: odor and sensory irritation. In: Levin H (ed) Indoor air 2002, vol. II. Indoor Air 2002, Monterey, pp 237–242

  • Cometto-Muñiz JE, Cain WS, Abraham MH (2003a) Dose-addition of individual odorants in the odor detection of binary mixtures. Behav Brain Res 138:95–105

    Article  PubMed  Google Scholar 

  • Cometto-Muñiz JE, Cain WS, Abraham MH (2003b) Quantification of chemical vapors in chemosensory research. Chem Senses 28:467–477

    Article  PubMed  Google Scholar 

  • Cook SP, McCleskey EW (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain 95:41–47

    CAS  PubMed  Google Scholar 

  • Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632

    CAS  PubMed  Google Scholar 

  • Eccles R (1994) Menthol and related cooling compounds. J Pharm Pharmacol 46:618–630

    PubMed  Google Scholar 

  • Feller W (1968–1971) An introduction to probability theory and its applications. Wiley, New York

  • Feng Y, Simpson TL (2003) Nociceptive sensation and sensitivity evoked from human cornea and conjunctiva stimulated by CO2. Invest Ophthalmol Vis Sci 44:529–532

    Article  PubMed  Google Scholar 

  • Finger TE, Silver WL, Bryant B (1999) Trigeminal nerve. In: Adelman G, Smith BH (eds) Encyclopedia of neuroscience, vol. II. Elsevier, Amsterdam, pp 2069–2071

  • Kane LE, Alarie Y (1978) Evaluation of sensory irritation from acrolein-formaldehyde mixtures. Am Ind Hyg Assoc J 39:270–274

    CAS  PubMed  Google Scholar 

  • Kasanen J-P, Pasanen A-L, Pasanen P, Liesivuori J, Kosma V-M, Alarie Y (1999) Evaluation of sensory irritation of Δ3-carene and turpentine, and acceptable levels of monoterpenes in occupational and indoor environment. J Toxicol Environ Health A 57:89–114

    Article  CAS  PubMed  Google Scholar 

  • Laurent G (1999) A systems perspective on early olfactory coding. Science 286:723–728

    Article  CAS  PubMed  Google Scholar 

  • Macmillan NA, Creelman CD (1991) Detection theory: a user’s guide. Cambridge University Press, Cambridge

    Google Scholar 

  • Martin JH, Jessell TM (1991) Modality coding in the somatic sensory system. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 3rd edn. Elsevier, New York, pp 341–352

  • McCleskey EW, Gold MS (1999) Ion channels of nociception. Annu Rev Physiol 61:835–856

    CAS  PubMed  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  Google Scholar 

  • Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286:711–715

    Article  CAS  PubMed  Google Scholar 

  • Nielsen GD, Kristiansen U, Hansen L, Alarie Y (1988) Irritation of the upper airways from mixtures of cumene and n-propanol. Mechanisms and their consequences for setting industrial exposure limits. Arch Toxicol 62:209–215

    CAS  PubMed  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    CAS  PubMed  Google Scholar 

  • Rawson NE, Gomez G (2002) Cell and molecular biology of human olfaction. Microsc Res Tech 58:142–151

    Article  CAS  PubMed  Google Scholar 

  • Sutherland SP, Cook SP, McCleskey EW (2000) Chemical mediators of pain due to tissue damage and ischemia. Prog Brain Res 129:21–38

    CAS  PubMed  Google Scholar 

  • Szallasi A (1994) The vanilloid (capsaicin) receptor: receptor types and species differences. Gen Pharmacol 25:223–243

    CAS  PubMed  Google Scholar 

  • Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    PubMed  Google Scholar 

  • Szallasi A, Jonassohn M, Acs G, Biro T, Acs P, Blumberg PM, Sterner O (1996) The stimulation of capsaicin-sensitive neurones in a vanilloid receptor-mediated fashion by pungent terpenoids possessing an unsaturated 1, 4-dialdehyde moiety. Br J Pharmacol 119:283–290

    CAS  PubMed  Google Scholar 

  • Trevisani M, Smart D, Gunthorpe MJ, Tognetto M, Barbieri M, Campi B, Amadesi S, Gray J, Jerman JC, Brough SJ, Owen D, Smith GD, Randall AD, Harrison S, Bianchi A, Davis JB, Geppetti P (2002) Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci 5:546–551

    Article  CAS  PubMed  Google Scholar 

  • Walpole CS, Bevan S, Bloomfield G, Breckenridge R, James IF, Ritchie T, Szallasi A, Winter J, Wrigglesworth R (1996) Similarities and differences in the structure-activity relationships of capsaicin and resiniferatoxin analogues. J Med Chem 39:2939–2952

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work described in this article was supported by research grant number R01 DC 02741 from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health. Thanks are due to J.M. Snell and A.J. Gorzeman for excellent technical assistance. Thanks are also due to the following students for their help in various stages of the study: Y.T. Wong, O. Del Valle, and B. Flores.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Enrique Cometto-Muñiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cometto-Muñiz, J.E., Cain, W.S. & Abraham, M.H. Chemosensory additivity in trigeminal chemoreception as reflected by detection of mixtures. Exp Brain Res 158, 196–206 (2004). https://doi.org/10.1007/s00221-004-1890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1890-5

Keywords

Navigation