Skip to main content

Advertisement

Log in

Spatial tuning and dynamics of vestibular semicircular canal afferents in rhesus monkeys

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Rotational head motion in vertebrates is detected by the three semicircular canals of the vestibular system whose innervating primary afferent fibers encode movement information in specific head planes. In order to further investigate the nature of vestibular central processing of rotational motion in rhesus monkeys, it was first necessary to quantify afferent information coding in this species. Extracellular recordings were performed to determine the spatial and dynamic properties of semicircular canal afferents to rotational motion in awake rhesus monkeys. We found that the afferents innervating specific semicircular canals had maximum sensitivity vectors that were mutually orthogonal. Similar to other species, afferent response dynamics varied, with regular firing afferents having increased long time constants (t 1), decreased cupula velocity time constants (t v), and decreased fractional order dynamic operator values (s k) as compared to irregular firing afferents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anastasio TJ, Correia MJ, Perachio AA (1985) Spontaneous and driven responses of semicircular canal primary afferents in the unanesthetized pigeon. J Neurophysiol 54:335–347

    CAS  PubMed  Google Scholar 

  • Anderson JH, Blanks RHI, Precht W (1978) Response characteristics of semicircular canal and otolith systems in cat. I. Dynamic responses of primary vestibular fibers. Exp Brain Res 32:491–507

    CAS  PubMed  Google Scholar 

  • Angelaki DE, Dickman JD (2000) Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J Neurophysiol 84:2113–2132

    CAS  PubMed  Google Scholar 

  • Baird RA, Desmadryl G, Fernandez C, Goldberg JM (1988) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60:182–203

    CAS  PubMed  Google Scholar 

  • Blanks RHI, Precht W (1976) Functional characterization of primary vestibular afferents in the frog. Exp Brain Res 25:369–390

    CAS  PubMed  Google Scholar 

  • Blanks RHI, Curthoys IS, Markham CH (1972) Planar relationships of semicircular canals in the cat. Am J Physiol 223:55–62

    CAS  PubMed  Google Scholar 

  • Blanks RHI, Curthoys IS, Markham CH (1975) Planar relationships of semicircular canals in man. Acta Otolaryngol 80:185–196

    CAS  PubMed  Google Scholar 

  • Blanks RHI, Curthoys IS, Bennett ML, Markham CH (1985) Planar relationships of the semicircular canals in rhesus and squirrel monkeys. Brain Res 340:315–324

    CAS  PubMed  Google Scholar 

  • Boyle R, Highstein SM (1990) Resting discharge and response dynamics of horizontal semicircular canal afferents of the toadfish, Opsanus tau. J Neurophysiol 10:1557–1569

    CAS  Google Scholar 

  • Brichta AM, Goldberg JM (2000) Morphological identification of physiologically characterized afferents innervating the turtle posterior crista. J Neurophysiol 83:1202–1223

    CAS  PubMed  Google Scholar 

  • Brichta AM, Acuna DL, Peterson EH (1988) Planar relations of semicircular canals in awake, resting turtles, Pseudemys scripta. Brain Behav Evol 32:236–245

    CAS  PubMed  Google Scholar 

  • Correia MJ, Perachio AA, Dickman JD et al. (1992) Changes in monkey horizontal semicircular canal afferent responses after space flight. J Appl Physiol 73:112–120

    Google Scholar 

  • Curthoys IS, Curthoys EJ, Blanks RHI, Markham CH (1975) The orientation of the semicircular canals in the guinea pig. Acta Otolaryngol 80:197–205

    CAS  PubMed  Google Scholar 

  • Daunicht WJ, Pellionisz AJ (1987) Spatial arrangement of the vestibular and the oculomotor system in the rat. Brain Res 435:48–56

    Article  CAS  PubMed  Google Scholar 

  • Dickman JD (1996) Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons. Exp Brain Res 111:8-20

    CAS  PubMed  Google Scholar 

  • Dickman JD, Angelaki DE (2002) Vestibular convergence patterns in vestibular nuclei neurons of alert primates. J Neurophysiol 88:3518–3533

    PubMed  Google Scholar 

  • Dickman JD, Angelaki DE (2003) Dynamics of vestibular neurons during rotational motion in alert rhesus monkeys. Exp Brain Res (in press)

  • Dickman JD, Correia MJ (1989a) Responses of pigeon horizontal semicircular canal afferent fibers. I. Step, trapezoid, and low-frequency sinusoid mechanical and rotational stimulation. J Neurophysiol 62:1090–1101

    CAS  PubMed  Google Scholar 

  • Dickman JD, Correia MJ (1989b) Responses of pigeon horizontal semicircular canal afferent fibers. II. High frequency mechanical stimulation. J Neurophysiol 62:1101–1112

    Google Scholar 

  • Estes MS, Blanks RHI, Markham CH (1975) Physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. J Neurophysiol 38:1232–1249

    CAS  PubMed  Google Scholar 

  • Ezure K, Graf KW (1984) A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral- and frontal-eyed animals. I. Orientation of semicircular canals and extraocular muscles. Neuroscience 12:85–94

    CAS  PubMed  Google Scholar 

  • Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675

    CAS  PubMed  Google Scholar 

  • Gacek R, Rasmussen AT (1961) Fiber analysis of the statoacoustic nerve of the guinea pig, cat and monkey. Anat Rec 139:445–463

    Google Scholar 

  • Ghanem TA, Rabbitt RD, Tresco PA (1998) Three-dimensional reconstruction of the membranous vestibular labyrinth in the toadfish, Opsanus tau. Hearing Res 124:27–43

    Article  CAS  Google Scholar 

  • Goldberg JM, Fernandez C (1971a) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol 34:635–660

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Fernandez C (1971b) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variations among units in their discharge properties. J Neurophysiol 34:676–683

    Google Scholar 

  • Goldberg JM, Smith CE, Fernandez C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51:1236–1256

    CAS  PubMed  Google Scholar 

  • Hartmann R, Klinke R (1980) Discharge properties of afferent fibers of the goldfish semicircular canal with high-frequency stimulation. Pflugers Archiv 388:111–121

    CAS  PubMed  Google Scholar 

  • Hess BJM (1990) Dual-search coil for measuring 3-dimensional eye movements in experimental animals. Vision Res 30:597–602

    CAS  PubMed  Google Scholar 

  • Hullar TE, Minor LB (1999) High-frequency dynamics of regularly discharging canal afferents provide a linear signal for angular vestibuloocular reflexes. J Neurophysiol 82:2000–2005

    PubMed  Google Scholar 

  • Keller EL (1976) Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 24:459–471

    CAS  PubMed  Google Scholar 

  • Landolt JP, Correia MJ (1980) Neurodynamic response analysis of anterior semicircular canal afferents in the pigeon. J Neurophysiol 43:1746–1770

    CAS  PubMed  Google Scholar 

  • Landolt JP, Topliff EDL, Silverberg JD (1973) Size distribution analysis of myelinated fibers in the vestibular nerve of the pigeon. Brain Res 54:31–42

    Article  CAS  PubMed  Google Scholar 

  • Louie A, Kimm J (1976) Response of VIII nerve fibers to sinusoidal oscillation in the awake monkey. Exp Brain Res 24:447–457

    CAS  PubMed  Google Scholar 

  • Lowenstein O, Sand A (1936) The activity of the horizontal semicircular canal of the dogfish, Scyllium canicula. J Exp Biol 13:416–428

    Google Scholar 

  • O’Leary DP, Honrubia V (1976) Analysis of afferent responses from isolated semicircular canal of the guitarfish using rotational acceleration white-noise inputs. II. Estimation of linear system parameters and gain and phase spectra. J Neurophysiol 39:645–659

    CAS  PubMed  Google Scholar 

  • Precht W, Llinas R, Clark M (1971) Physiological responses of frog vestibular fibers to horizontal angular rotation. Exp Brain Res 13:378–407

    CAS  PubMed  Google Scholar 

  • Rabbitt RD (1999) Directional coding of three-dimensional movements by the vestibular semicircular canals. Biol Cybern 80:417–431

    Article  CAS  PubMed  Google Scholar 

  • Reisine H, Simpson JI, Henn V (1988) A geometric analysis of semicircular canals and induced activity in their peripheral afferents in the rhesus monkey. Ann NY Acad Sci 545:10–20

    CAS  PubMed  Google Scholar 

  • Robinson DA (1982) The use of matrices in analyzing the three-dimensional behavior of the vestibule-ocular reflex. Biol Cybern 46:53–66

    CAS  PubMed  Google Scholar 

  • Ross DA (1936) Electrical studies on the frog’s labyrinth. J Physiol (Lond) 86:117–146

    Google Scholar 

  • Schneider LW, Anderson DJ (1976) Transfer characteristics of first and second order lateral canal vestibular neurons in gerbil. Brain Res 112:61–76

    Article  CAS  PubMed  Google Scholar 

  • Sirota MG, Babayev BM, Beloozverova IB et al. (1987) Characteristics of vestibular reactions to canal and otolith stimulation at an early stage of exposure to microgravity. Physiologist (Supp. 1) 30:82–84

    Google Scholar 

  • Steinhausen W (1933) Uber die beobachtung der cupula in den bogengangsampullen des labyrinths des lebenden hechts. Pflugers Arch Ges Physiol 232:500–512

    Google Scholar 

  • Suzuki Y, Straumann D, Simpson JI et al. (1999) Three-dimensional extraocular motoneuron innervation in the rhesus monkey. Exp Brain Res 126:187–199

    Article  CAS  PubMed  Google Scholar 

  • Thorson J, Biederman-Thorson M (1974) Distributed relaxation processing sensory adaptation. Science 183:161–172

    CAS  PubMed  Google Scholar 

  • Tomko DL, Peterka RJ, Schor RH, O’Leary DP (1981) Response dynamics of horizontal canal afferents in barbiturate-anesthetized cats. J Neurophysiol 45:376–396

    CAS  PubMed  Google Scholar 

  • Van Egmond AAJ, Groen JJ, Jongkess LBW (1949) The mechanics of the semicircular canals. J Physiol (Lond) 110:1-17

    Google Scholar 

  • Van Egmond AAJ, Groen JJ, Jongkees LBW (1952) The function of the vestibular organ. Pract Otorhinolaryngol (Suppl 2) 14:1–109

    Google Scholar 

  • Young LR, Oman CR (1969) Model of vestibular adaptation to horizontal rotations. Aerospace Med 40:1076–1080

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Benny Harris and Jesus Loya for their fine technical assistance. The work was supported by grants from NIH (DC04160), and HHMI (57003555). NASA (NAG2-1493).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Dickman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haque, A., Angelaki, D.E. & Dickman, J.D. Spatial tuning and dynamics of vestibular semicircular canal afferents in rhesus monkeys. Exp Brain Res 155, 81–90 (2004). https://doi.org/10.1007/s00221-003-1693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1693-0

Keywords

Navigation