Skip to main content
Log in

Isolating motion responses in visual evoked potentials by preadapting flicker-sensitive mechanisms

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Onset of visual motion evokes a component in the EEG, the motion onset VEP. Exploring its motion specificity with a direction-specific adaptation paradigm, previous work demonstrated that less than 50% of the motion onset VEP represents actual motion detection. Here, we tested whether preadaptation of flicker-sensitive mechanisms can help to isolate motion-specific responses in the VEP. Flicker preadaptation was accomplished by limiting dot lifetime in the random-dot kinematograms that we used to study the direction specificity of motion adaptation. With unlimited dot lifetime, motion adaptation reduced the VEP amplitude to 35% (adapted direction) and 50% (opposite direction). With the shortest dot lifetime (40 ms), motion adaptation reduced the amplitude to 55% (adapted direction) and 70% (opposite direction). These findings suggest that random-dot kinematograms with short dot lifetimes could improve the investigation of human motion processing, be it in electrophysiology or other fields. While such stimuli successfully preadapt flicker-related components, they still evoke a sizable response, of which an estimated 70% is motion-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A–D.
Fig. 4A–D.

Similar content being viewed by others

References

  • Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106–1130

    CAS  PubMed  Google Scholar 

  • American Encephalographic Society (1994) Guideline thirteen: Guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113

    PubMed  Google Scholar 

  • Andreassi JL, Juszczak NM (1982) Hemispheric sex differences in response to apparently moving stimuli as indicated by visual evoked potentials. Int J Neurosci 17:83–91

    CAS  PubMed  Google Scholar 

  • Bach M (1999) Bildergeschichte. Apples DrawSprocket in eigenen Programmen verwenden. c't 6:350–353

  • Bach M, Hoffmann MB (2000) Visual motion detection in man is governed by non-retinal mechanisms. Vision Res 40:2379–2385

    CAS  PubMed  Google Scholar 

  • Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials (motion VEP). Vision Res 34:1541–1547

    CAS  PubMed  Google Scholar 

  • Bach M, Ullrich D (1997) Contrast dependency of motion-onset and pattern-reversal VEPs: Interaction of stimulus type, recording site and response component. Vision Res 37:1845–1849

    CAS  PubMed  Google Scholar 

  • Bach M, Ullrich D, Hoffmann M (1996) Motion-onset VEP: missing direction-specificity of adaptation? Invest Ophthalmol Vis Sci 37:S446, 2040

    Google Scholar 

  • Baker CL Jr, Hess RF, Zihl J (1991) Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli. J Neurosci 11:454–461

    PubMed  Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12:297–306

    CAS  PubMed  Google Scholar 

  • Brigell M, Strafella A, Parmeggiani L, DeMarco PJ Jr, Celesia GG (1996) The effects of luminance and chromatic background flicker on the human visual evoked potential. Vis Neurosci 13:265–275

    CAS  PubMed  Google Scholar 

  • Britten KH, Newsome WT (1998) Tuning bandwidths for near-threshold stimuli in area MT. J Neurophysiol 80:762–770

    CAS  PubMed  Google Scholar 

  • Burr DC, Santoro L (2001) Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Res 41:1891–1899

    Article  CAS  PubMed  Google Scholar 

  • Clarke PG (1972) Visual evoked potentials to sudden reversal of the motion of a pattern. Brain Res 36:453–458

    CAS  PubMed  Google Scholar 

  • Clarke PG (1973a) Comparison of visual evoked potentials to stationary and to moving patterns. Exp Brain Res 18:156–164

    CAS  PubMed  Google Scholar 

  • Clarke PG (1973b) Visual evoked potentials to changes in the motion of a patterned field. Exp Brain Res 18:145–155

    CAS  PubMed  Google Scholar 

  • Clarke PG (1974) Are visual evoked potentials to motion-reversal produced by direction-sensitive brain mechanisms? Vision Res 14:1281–1284

    Google Scholar 

  • Culham JC, Dukelow SP, Vilis T, Hassard FA, Gati JS, Menon RS, Goodale MA (1999) Recovery of fMRI activation in motion area MT following storage of the motion aftereffect. J Neurophysiol 81:388–393

    CAS  PubMed  Google Scholar 

  • DeMarco PJ Jr, Brigell MG, Gordon M (1997) The peripheral flicker effect: desensitization of the luminance pathway by static and modulated light. Vision Res 37:2419–2425

    Article  PubMed  Google Scholar 

  • DeYoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11:219–226

    PubMed  Google Scholar 

  • Göpfert E, Müller R, Markwardt F, Schlykowa L (1983) Visuell evozierte Potentiale bei Musterbewegung. Z EEG-EMG 14:47–51

  • Hautzel H, Taylor JG, Krause BJ, Schmitz N, Tellmann L, Ziemons K, Shah NJ, Herzog H, Muller-Gartner HW (2001) The motion aftereffect: more than area V5/MT? Evidence from 15O-butanol PET studies. Brain Res 892:281–292

    Article  CAS  PubMed  Google Scholar 

  • He S, Cohen ER, Hu X (1998) Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect. Curr Biol 8:1215–1218

    CAS  PubMed  Google Scholar 

  • Hoffmann MB, Bach M (2002) The distinction between eye and object motion is reflected by the motion-onset visual evoked potential. Exp Brain Res 144:141–151

    Article  PubMed  Google Scholar 

  • Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: Motion-onset visual evoked potentials and subjective estimates. Vision Res 39:437–444

    CAS  PubMed  Google Scholar 

  • Hoffmann MB, Unsold AS, Bach M (2001) Directional tuning of human motion adaptation as reflected by the motion VEP. Vision Res 41:2187–2194

    CAS  PubMed  Google Scholar 

  • Ibbotson MR, Clifford CW, Mark RF (1998) Adaptation to visual motion in directional neurons of the nucleus of the optic tract. J Neurophysiol 79:1481–1493

    CAS  PubMed  Google Scholar 

  • Ibbotson MR, Clifford CW, Mark RF (1999) A quadratic nonlinearity underlies direction selectivity in the nucleus of the optic tract. Vis Neurosci 16:991–1000

    Article  CAS  PubMed  Google Scholar 

  • Ingling CR Jr, Tsou BH (1988) Spectral sensitivity for flicker and acuity criteria. J Opt Soc Am A 5:1374–1378

    PubMed  Google Scholar 

  • Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci U S A 83:2755–2757

    CAS  PubMed  Google Scholar 

  • Klistorner AI, Graham SL, Martins A (2000) Multifocal pattern electroretinogram does not demonstrate localised field defects in glaucoma. Doc Ophthalmol 100:155–165

    Article  CAS  Google Scholar 

  • Kuba M, Kubová Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80:83–89

    CAS  PubMed  Google Scholar 

  • Kubová Z, Kuba M, Hubacek J, Vít F (1990) Properties of visual evoked potentials to onset of movement on a television screen. Doc Ophthalmol 75:67–72

    PubMed  Google Scholar 

  • Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35:197–205

    PubMed  Google Scholar 

  • Levinson E, Sekuler R (1975) The independence of channels in human vision selective for direction of movement. J Physiol (Lond) 250:347–366

    Google Scholar 

  • Levinson E, Sekuler R (1980) A two-dimensional analysis of direction-specific adaptation. Vision Res 20:103–107

    Article  CAS  PubMed  Google Scholar 

  • MacKay DM, Rietveld WJ (1968) Electroencephalogram potentials evoked by accelerated visual motion. Nature 217:677–678

    CAS  PubMed  Google Scholar 

  • Müller R, Göpfert E (1988) The influence of grating contrast on the human cortical potential evoked by motion. Acta Neurobiol Exp 48:239–249

    Google Scholar 

  • Müller R, Göpfert E, Hartwig M (1985) VEP-Untersuchungen zur Kodierung der Geschwindigkeit bewegter Streifenmuster im Cortex des Menschen. Z EEG-EMG 16:75–80

  • Niedeggen M, Wist ER (1999) Characteristics of visual evoked potentials generated by motion coherence onset. Cogn Brain Res 8:95–105

    Article  CAS  Google Scholar 

  • Odom JV, De Smedt E, Van Malderen L, Spileers W (1998) Visually evoked potentials evoked by moving unidimensional noise stimuli: effects of contrast, spatial frequency, active electrode location, reference electrode location, and stimulus type. Doc Ophthalmol 95:315–333

    Article  PubMed  Google Scholar 

  • Raymond JE (1993) Movement direction analysers: independence and bandwidth. Vision Res 33:767–775

    Article  CAS  PubMed  Google Scholar 

  • Scase MO, Braddick OJ, Raymond JE (1996) What is noise for the motion system? Vision Res 36:2579–2586

    Google Scholar 

  • Schieting S, Spillmann L (1987) Flicker adaptation in the peripheral retina. Vision Res 27:277–284

    Article  CAS  PubMed  Google Scholar 

  • Schiller PH, Logothetis NK, Charles ER (1990) Role of the color-opponent and broad-band channels in vision. Vis Neurosci 5:321–346

    CAS  PubMed  Google Scholar 

  • Snowden RJ, Ullrich D, Bach M (1995) Isolation and characteristics of a steady-state visually-evoked potential in humans related to the motion of a stimulus. Vision Res 35:1365–1373

    CAS  PubMed  Google Scholar 

  • Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127:355–370

    CAS  PubMed  Google Scholar 

  • Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375:139–141

    CAS  PubMed  Google Scholar 

  • Treue S, Hol K, Rauber HJ (2000) Seeing multiple directions of motion-physiology and psychophysics. Nat Neurosci 3:270–276

    Article  CAS  PubMed  Google Scholar 

  • World Medical Association (2000) Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 284:3043–3045

    PubMed  Google Scholar 

  • Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649

    CAS  PubMed  Google Scholar 

  • Zele AJ, Vingrys AJ (2000) Flicker adaptation can be explained by probability summation between ON- and OFF-mechanisms. Clin Exp Ophthalmol 28:227–229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Sven P. Heinrich's advice and thank our subjects for their patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer, J.P., Bach, M. Isolating motion responses in visual evoked potentials by preadapting flicker-sensitive mechanisms. Exp Brain Res 151, 536–541 (2003). https://doi.org/10.1007/s00221-003-1509-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1509-2

Keywords

Navigation