Skip to main content
Log in

Cluster Coagulation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract:

We introduce a general class of coagulation models, where clusters of given types may coagulate in more than one way and where the rate at which this happens may depend on the cluster types. In the continuum version of these models there is a generalization of Smoluchowski's coagulation equation. We introduce a notion of strong solution for this equation and prove the existence of a maximal strong solution, which while it persists is the only solution. When the total rate of coagulation for particles is bounded above and below by constant multiples of the product of their masses, we show that the maximal strong solution coincides with the maximal mass-conserving solution and does not persist for all time. Thus, for these models, loss of mass (to infinity) coincides with divergence of the second moment of the mass distribution and takes place in a finite time. When the total rate of coagulation of large particles is proportional to their masses, we establish the existence and uniqueness of solutions for all time. In a restricted class of “polymer” models, we allow coagulation of weighted shapes in a finite number of ways. For this class we establish a discrete approximation scheme for the continuum dynamics.

For each continuum coagulation model, there is a corresponding finite-particle-number stochastic model. We show that, in the polymer case, which includes the case of simple mass coalescence, as the number of particles becomes large, the stochastic model converges weakly to the deterministic continuum model, at an exponential rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 13 July 1998 / Accepted: 9 August 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, J. Cluster Coagulation. Comm Math Phys 209, 407–435 (2000). https://doi.org/10.1007/s002200050026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002200050026

Keywords

Navigation