Skip to main content
Log in

Long-Time Behaviors of Mean-Field Interacting Particle Systems Related to McKean–Vlasov Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate concentration inequalities, exponential convergence in the Wasserstein metric \(W_{1}\), and uniform-in-time propagation of chaos for the mean-field weakly interacting particle system related to McKean–Vlasov equation. By means of the known approximate componentwise reflection coupling and with the help of some new cost function, we obtain explicit estimates for those three problems, avoiding the technical conditions in the known results. Our results apply to possibly multi-well confinement potentials, and interaction potentials W with bounded second mixed derivatives \(\nabla ^2_{xy}W\) which are not too big, so that there is no phase transition. Several examples are provided to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benachour, S., Roynette, B., Talay, D., Vallois, P.: Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos. Stoch. Proc. Appl. 75(2), 173–201 (1998)

    Article  MathSciNet  Google Scholar 

  2. Benachour, S., Roynette, B., Vallois, P.: Nonlinear self-stabilizing processes. II. Convergence to invariant probability. Stoch. Proc. Appl. 75(2), 203–224 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bobkov, S., Götze, F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163, 1–28 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bolley, F.: Quantitative concentration inequalities on sample path space for mean field interaction. ESAIM Probab. Stat. 14, 192–209 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bolley, F., Guillin, A., Malrieu, F.: Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. ESAIM. Math. Model. Numer. Anal. 44, 867–884 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bolley, F., Guillin, A., Villani, C.: Quantitative concentration inequalities for empirical measures on non-compcact spaces. Probab. Theory Relat. Fields 137, 541–593 (2007)

    Article  Google Scholar 

  7. Buckdahn, R., Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45, 824–878 (2017)

    Article  MathSciNet  Google Scholar 

  8. Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19(3), 971–1018 (2003)

    Article  MathSciNet  Google Scholar 

  9. Cattiaux, P., Guillin, A., Malrieu, F.: Probabilistic approach for granular media equations in the non-uniformly convex case. Probab. Theory Relat. Fields 140, 19–40 (2008)

    Article  MathSciNet  Google Scholar 

  10. Djellout, H., Guillin, A., Wu, L.: Transportation cost-information inequalities for random dynamical systems and diffusions. Ann. Probab. 32(3B), 2702–2732 (2004)

    Article  MathSciNet  Google Scholar 

  11. Del Moral, P., Tugaut, J.: Uniform propagation of chaos and creation of chaos for a class of nonlinear diffusions. Stoch. Anal. Appl. 37(6), 909–935 (2019)

    Article  MathSciNet  Google Scholar 

  12. Durmus, A., Eberle, A., Guillin, A., Zimmer, R.: An elementary approach to uniform in Time propagation of chaos. Proc. Amer. Math. Soc. 148, 5387–5398 (2020)

    Article  MathSciNet  Google Scholar 

  13. Eberle, A.: Reflection couplings and contraction rates for diffusions. Probab. Theory Relat. Fields 166, 851–886 (2016)

    Article  MathSciNet  Google Scholar 

  14. Eberle, A., Guillin, A., Zimmer, R.: Quantitative Harris type theorems for diffusions and McKean-Vlasov processes. Trans. Amer. Math. Soc. 371, 7135–7173 (2019)

    Article  MathSciNet  Google Scholar 

  15. Gärtner, J.: On the McKean–Vlasov limit for interacting diffusions. Math. Nachrichten 137(1), 197–248 (1988)

    Article  MathSciNet  Google Scholar 

  16. Guillin, A., Liu, W., Wu, L., Zhang, C.: Poincaré and logarithmic Sobolev inequalities for particles in mean field interactions. To appear in Ann. Appl. Probab. arXiv:1909.07051, (2019)

  17. Hammersley, W., Siska, D., Szpruch, L.: McKean–Vlasov SDEs under measure dependent Lyapunov conditions. Ann. Inst. H. Poincaré Probab. Statist. 57(2), 1032–1057 (2021)

    Article  MathSciNet  Google Scholar 

  18. Hauray, M., Mischler, S.: On Kac’s chaos and related problems. J. Funct. Anal. 266(10), 6055–6157 (2014)

  19. Jabin, P.E., Wang, Z.: Quantitative estimates of propagation of chaos for stochastic systems with \(W^{-1, \infty }\) kernels. Invent. Math. 214, 523–591 (2018)

    Article  MathSciNet  Google Scholar 

  20. Lacker, D.: On a strong form of propagation of chaos for McKean-Vlasov equations. Electron. Commun. Probab. 23(45), 1–11 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Ledoux, M.: Concentration of measure and logarithmic Sobolev inequalities. In: Séminaire de Probabilités XXXVI. Lecture Notes in Math. vol. 1709, pp. 120-216. Springer-Verlag, Berlin, (1999)

  22. Ledoux, M.: The Concentration of Measure Phenomenon. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  23. Luo, D., Wang, J.: Exponential convergence in \(L^p\)-Wasserstein distance for diffusion processes without uniformly dissipative drift. Math. Nachr. 289, 1909–1926 (2016)

    Article  MathSciNet  Google Scholar 

  24. Kac, M.: Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955, vol. III, pages 171-197. University of California Press, Berkeley and Los Angeles, (1956)

  25. Malrieu, F.: Logarithmic sobolev inequalities for some nonlinear PDE’s. Stoch. Proc. Appl. 95, 109–132 (2001)

  26. Malrieu, F.: Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13(2), 540–560 (2003)

    Article  MathSciNet  Google Scholar 

  27. Méléard, S.: Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. In: Talay, D., Tubaro, L. (eds.) Probabilistic Models for Nonlinear Partial Differential Equations, Montecatini Terme, 1995, Lecture Notes in Mathematics, vol. 1627, pp. 42–95. Springer-Verlag, Berlin (1996)

    Google Scholar 

  28. McKean, H.P.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. 56(6), 1907–1911 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  29. Mischler, S., Mouhot, C.: Kac’s program in kinetic theory. Invent. Math. 193(1), 1–147 (2013)

  30. Mischler, S., Mouhot, C., Wennberg, B.: A new approach to quantitative propagation of chaos for drift, diffusion and jump processes. Probab. Theory Relat. Fields 161(1), 1–59 (2015)

    Article  MathSciNet  Google Scholar 

  31. Mishura, Y.S., Veretennikov, A.Y.: Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations. Theor. Probab. Math. Statist. 103, 59–101 (2020)

    Article  Google Scholar 

  32. Sznitman, A.S.: Topics in propagation of chaos. École d’Été de Probabilités de Saint-Flour XIX, Lecture Notes in Math. vol. 1464, pp. 165–251 (1991)

  33. Wu, L.: Gradient estimates of Poisson equations on Riemannian manifolds and applications. J. Funct. Anal. 257, 4015–4033 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the referees of this paper. Their comments and suggestions improve much the readability and the organization of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

Communicated by C.Mouhot.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported by NSFC (12071361, 11731009, 12131019), the Fundamental Research Funds for the Central Universities 2042020kf0217 and 2042020kf0031, and CSC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wu, L. & Zhang, C. Long-Time Behaviors of Mean-Field Interacting Particle Systems Related to McKean–Vlasov Equations. Commun. Math. Phys. 387, 179–214 (2021). https://doi.org/10.1007/s00220-021-04198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04198-5

Navigation