Skip to main content
Log in

Evolution of Angular Momentum and Center of Mass at Null Infinity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study how conserved quantities such as angular momentum and center of mass evolve with respect to the retarded time at null infinity, which is described in terms of a Bondi–Sachs coordinate system. These evolution formulae complement the classical Bondi mass loss formula for gravitational radiation. They are further expressed in terms of the potentials of the shear and news tensors. The consequences that follow from these formulae are (1) Supertranslation invariance of the fluxes of the CWY conserved quantities. (2) A conservation law of angular momentum à la Christodoulou. (3) A duality paradigm for null infinity. In particular, the supertranslation invariance distinguishes the CWY angular momentum and center of mass from the classical definitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The outgoing radiation condition assumes the traceless part of the \(r^{-2}\) term in the expansion of \(h_{AB}\) is zero. The presence of this traceless term will lead to a logarithmic term in the expansions of \(W^A\) and V. Spacetimes with metrics which admit an expansion in terms of \(r^{-j}\log ^i r\) are called “polyhomogeneous" and are studied in [11]. They do not obey the outgoing radiation condition or the peeling theorem [23], but they do appear as perturbations of the Minkowski spacetime by the work of Christodoulou–Klainerman [9].

References

  1. Ashtekar, A., Hansen, R.O.: A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity. J. Math. Phys. 19(7), 1542–1566 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems. Proc. R. Soc. Lond. Ser. A 269, 21–52 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  3. Chen, P.-N., Wang, M.-T., Yau, S.-T.: Evaluating quasi-local energy and solving optimal embedding equation at null infinity. Commun. Math. Phys. 308(3), 845–863 (2011)

    Article  ADS  Google Scholar 

  4. Chen, P.-N., Wang, M.-T., Yau, S.-T.: Conserved quantities in general relativity: from the quasi-local level to spatial infinity. Commun. Math. Phys. 338(1), 31–80 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Chen, P.-N., Wang, M.-T., Yau, S.-T.: Quasilocal angular momentum and center of mass in general relativity. Adv. Theor. Math. Phys. 20(4), 671–682 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chen, P.-N., Wang, M.-T., Yau, S.-T.: Evaluating small sphere limit of the Wang–Yau quasi-local energy. Commun. Math. Phys. 357(2), 731–774 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Christodoulou, D.: Nonlinear nature of gravitation and gravitational-wave experiments. Phys. Rev. Lett. 67(12), 1486–1489 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. Christodoulou, D.: The global initial value problem in general relativity. In: Proceedings of the 9th Marcel Grossmann Meeting on General Relativity, MG9, pp. 44–54. World Scientific (2002)

  9. Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, vol. 41. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  10. Chruściel, P.T., Jezierski, J., Kijowski, J.: Hamiltonian Field Theory in the Radiating Regime. Lecture Notes in Physics. Monographs, vol. 70. Springer, Berlin (2002)

    MATH  Google Scholar 

  11. Chruściel, P.T., MacCallum, M.A.H., Singleton, D.B.: Gravitational waves in general relativity. XIV. Bondi expansions and the “polyhomogeneity” of \({\mathscr {I}}\). Philos. Trans. R. Soc. Lond. Ser. A 350(1962), 113–141 (1995)

  12. Dray, T., Streubel, M.: Angular momentum at null infinity. Class. Quantum Grav. 1(1), 15–26 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  13. Flanagan, È.È., Nichols, D.A.: Conserved charges of the extended Bondi–Metzner–Sachs algebra. Phys. Rev. D 95, 044002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hawking, S.W., Perry, M.J., Strominger, A.: Superrotation charge and supertranslation hair on black holes. J. High Energy Phys. 2017(5), 161 (2017)

    Article  MathSciNet  Google Scholar 

  15. Keller, J., Wang, Y.-K., Yau, S.-T.: Evaluating quasi-local angular momentum and center-of-mass at null infinity. arXiv: 1811.02383

  16. Klainerman, S., Szeftel, J.: Effective results on uniformization and intrinsic GCM spheres in perturbations of Kerr. arXiv:1912.12195

  17. Mädler, T., Winicour, J.: Bondi–Sachs formalism. Scholarpedia 11(12), 33528 (2016). arXiv:1609.01731

  18. Penrose, R.: Quasilocal mass and angular momentum in general relativity. Proc. R. Soc. Lond. Ser. A. 381(1780), 53–63 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  19. Penrose, R.: Some unsolved problems in classical general relativity. In: Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 631–668. Princeton Univ. Press, Princeton (2016)

  20. Rizzi, A.: Angular momentum in general relativity: a new definition. Phys. Rev. Lett. 81(6), 1150–1153 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  21. Rizzi, A.: Angular momentum in general relativity. PhD thesis, Princeton University (1997)

  22. Sachs, R.K.: Gravitational waves in general relativity. VIII. Waves in asymptotically flat space–time. Proc. R. Soc. Lond. Ser. A 270, 103–126 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  23. Valiente Kroon, J.A.: A comment on the outgoing radiation condition for the gravitational field and the peeling theorem. Gen. Relat. Gravit. 31(8), 1219–1224 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  24. Wang, M.-T.: Total mass and limits of quasilocal mass at future null infinity. arXiv:2003.07732

  25. Wang, M.-T., Yau, S.-T.: Quasi-local mass in general relativity. Phys. Rev. Lett. 102(2), 021101 (2009)

    Article  ADS  Google Scholar 

  26. Wang, M.-T., Yau, S.-T.: Isometric embeddings into the Minkowski space and new quasi-local mass. Commun. Math. Phys. 288(3), 919–942 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Ning Chen.

Additional information

Communicated by H. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P.-N. Chen is supported by NSF Grant DMS-1308164 and Simons Foundation Collaboration Grant #584785, M.-T. Wang is supported by NSF Grant DMS-1810856, Y.-K. Wang is supported by MOST Taiwan grant 107-2115-M-006-001-MY2, 109-2628-M-006-001 -MY3 and S.-T. Yau is supported by NSF Grants PHY-0714648 and DMS-1308244. The authors would like to thank the National Center for Theoretical Sciences at National Taiwan University where part of this research was carried out. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1810856.

Appendices

Appendix A. Christodoulou–Klainerman Connection Coefficients and Curvature Components in Bondi–Sachs Formalism

We write the limit of connection coefficients and curvature components defined in [7,8,9] in terms of the Bondi–Sachs metric coefficients.

We choose the null vector fields \(L = \frac{\partial }{\partial r}\) and \({\underline{L}}= \frac{2}{U}\left( \partial _u - W^D \partial _D - \frac{V}{2}\partial _r \right) \), which satisfy \(\langle L,{\underline{L}}\rangle = -2\).

Definition A.1

The second fundamental forms and torsion are defined by

$$\begin{aligned} \chi _{AB}&= \langle D_A L, \partial _B \rangle = \frac{1}{2} \text{ tr }\chi g_{AB} + {\widehat{\chi }}_{AB}\\ \underline{\chi }_{AB}&= \langle D_A {\underline{L}}, \partial _B \rangle = \frac{1}{2} \text{ tr }\underline{\chi }g_{AB} + {\widehat{\underline{\chi }}}_{AB}\\ \zeta _A&= \frac{1}{2} \langle D_A L, {\underline{L}}\rangle \end{aligned}$$

Their limit as \(r \rightarrow \infty \) are defined by

$$\begin{aligned} \Sigma&= \lim _{r\rightarrow \infty } {\widehat{\chi }}\\ \Xi&= \lim _{r\rightarrow \infty } r^{-1} {\widehat{\underline{\chi }}} \\ Z&= \lim _{r\rightarrow \infty } r\zeta . \end{aligned}$$

They are related to the metric coefficients in the corresponding Bondi–Sachs coordinate system as follows:

Proposition A.2

$$\begin{aligned} \Sigma _{AB}&= -\frac{1}{2} C_{AB}\\ \Xi _{AB}&= N_{AB}\\ Z_A&= -\frac{1}{2} \nabla ^B C_{AB} \end{aligned}$$

Proof

Starting with \(g_{AB} = r^2 \sigma _{AB} + rC_{AB} + O(1)\), the determinant condition gives \(\text{ tr }\chi = \frac{2}{r}\) and we compute

$$\begin{aligned} \chi _{AB} = r\sigma _{AB} + \frac{1}{2}C_{AB} + O(r^{-1}) \end{aligned}$$

to get \(\Sigma _{AB} = -\frac{1}{2}C_{AB}\). Direct computation gives

$$\begin{aligned} \underline{\chi }_{AB} = r(-\sigma _{AB} + \partial _u C_{AB} ) + O(1) \end{aligned}$$

and hence \(\text{ tr }\underline{\chi }= -\frac{2}{r} + O(r^{-2})\) and \({\widehat{\underline{\chi }}}_{AB} = r \partial _u C_{AB} + O(1)\). The limit of torsion follows from \(\zeta _A = -\frac{1}{r} W_A^{(-2)} + O(r^{-2})\). \(\quad \square \)

Definition A.3

The mass aspect and conjugate mass aspect function of Christodoulou–Klainerman are defined by

$$\begin{aligned} \mu = K + \frac{1}{4}\text{ tr }\chi \text{ tr }\underline{\chi }- \text{ div }\zeta \qquad \underline{\mu } = K + \frac{1}{4}\text{ tr }\chi \text{ tr }\underline{\chi }+ \text{ div }\zeta . \end{aligned}$$

Here K denotes the Gauss curvature of the two-sphere \(r=\)const. Their limits are defined by

$$\begin{aligned} N&= \lim _{r\rightarrow \infty } r^3 \mu \\ {\underline{N}}&= \lim _{r\rightarrow \infty } r^3 \underline{\mu }. \end{aligned}$$

We express them in terms of the Bondi–Sachs metric coefficients as follows:

Proposition A.4

$$\begin{aligned} N = 2m + \frac{1}{2}\nabla ^A\nabla ^B C_{AB}, \qquad {\underline{N}} = 2m - \frac{1}{2}\nabla ^A\nabla ^B C_{AB} \end{aligned}$$

Proof

We compute \(K = \frac{1}{r^2} + \frac{1}{2r^3} \nabla ^A\nabla ^B C_{AB} + O(r^{-4})\) and \(\frac{1}{4}\text{ tr }\chi \text{ tr }\underline{\chi }= -\frac{1}{r^2} + \frac{1}{r^3}(2m-\frac{1}{2}\nabla ^A\nabla ^B C_{AB})\) and the assertion follows. \(\quad \square \)

We turn to curvature components. The convention of Riemann curvature tensor is

$$\begin{aligned} R(X,Y)Z&= (D_X D_Y -D_Y D_X - D_{[X,Y]} )Z\\ R(X,Y,W,Z)&= \langle R(X,Y)Z,W \rangle . \end{aligned}$$

Definition A.5

Define the curvature components

Here is the area form of the two-sphere with respect to \(g_{AB}\). Their limits are defined by

$$\begin{aligned} {\underline{A}}_{AB}&= \lim _{r\rightarrow \infty } r^{-1}\underline{\alpha }_{AB}\\ {\underline{B}}_A&= \lim _{r\rightarrow \infty } r\underline{\beta }_A\\ P&= \lim _{r\rightarrow \infty } r^3\rho \\ Q&= \lim _{r\rightarrow \infty }r^3 \sigma \\ B_A&= \lim _{r\rightarrow \infty } r^3 \beta _A \end{aligned}$$

Note that \(({\underline{A}},{\underline{B}})\) were denoted by (AB) in [7].

We express them in terms of the Bondi–Sachs metric coefficients as follows:

Proposition A.6

$$\begin{aligned} {\underline{A}}_{AB}&= -2 \partial _u N_{AB}\\ {\underline{B}}_A&= \nabla ^B N_{AB}\\ P&= -2m - \frac{1}{4}C_{AB}N^{AB}\\ Q&= \epsilon ^{AB} \left( -\frac{1}{4}C_A^D N_{DB} - \frac{1}{2} \nabla _A \nabla ^D C_{DB} \right) \\ B_A&= -N_A \end{aligned}$$

Proof

The formula for \({\underline{A}}\) is obtained from (6) of [7], \(2 \frac{\partial \Xi }{\partial u} = -{\underline{A}}\), which is the rescaled limit of the propagation equation \(\widehat{{\underline{D}}} {\widehat{\underline{\chi }}} = -\underline{\alpha }\).

The formula for \({\underline{B}}\) is obtained from (2) of [7], \(\nabla ^B \Xi _{AB} = {\underline{B}}_A\), which is the rescaled limit of the Codazzi equation .

The formula for P and Q are obtained from (3) of [7],

$$\begin{aligned} \epsilon ^{AB} \nabla _A Z_B = Q - \frac{1}{2}\Sigma \wedge \Xi , \qquad \nabla ^A Z_A = {\underline{N}} + P - \frac{1}{2} \Sigma \cdot \Xi , \end{aligned}$$

which is the rescaled limit of the Hodge system

Finally, we consider the Codazzi equation

Its leading order at \(O(r^{-2})\) leads to (1) of [7] and its subleading order at \(O(r^{-3})\) leads to

$$\begin{aligned} \begin{aligned}&\left( -\frac{1}{4} \partial _A |C|^2 + \frac{1}{2} C^{BD} \nabla _D C_{AB} + \frac{1}{4} \nabla _A C_D^E C^D_E + \frac{1}{2} \nabla _D C^{DE}C_{AE} \right) + \frac{1}{4}C_{AB} \nabla _D C^{BD}\\&\quad = \zeta _A^{(-2)} - B_A. \end{aligned} \end{aligned}$$

We simplify the second term in the parentheses by the identity \(\nabla _{(D}C_{B)A} = \nabla _A C_{BD} + \nabla ^E C_{AE} \sigma _{BD} - \nabla ^E C_{E(D} C_{B)A}\) and the left-hand side becomes \(\frac{1}{8} \partial _A |C|^2 + \frac{1}{4}C_{AB}\nabla _D C^{BD}\). Direct computation yields \(\zeta _A^{(-2)} = -N_A + \frac{1}{8} \partial _A |C|^2 + \frac{1}{4}C_{AB}\nabla _D C^{BD}\) and the formula for B follows. \(\quad \square \)

Appendix B. Integration by Part Formula

In this section, we prove two integration formula that will be used to compute angular momentum and center of mass in spacetime with vanishing news.

Theorem B.1

Let \(Y^A = \epsilon ^{AB} \nabla _B \tilde{X}^k, k = 1,2,3\). Let \(F_{AB} = 2 \nabla _A\nabla _B f - \Delta f \sigma _{AB}\) and \(P_{BA} = \nabla _B\nabla ^D C_{DA} - \nabla _A\nabla ^D C_{DB}\). Then

$$\begin{aligned} \int _{S^2} Y^A \left( \frac{1}{4} C_{AB} \nabla _D F^{DB} + \frac{1}{4} F_{AB} \nabla _D C^{DB} -\frac{3}{4} P_{BA} \nabla ^B f -\frac{1}{4} \nabla ^B P_{BA} f \right) =0. \end{aligned}$$

Proof

We integrate by parts the last two terms to get

$$\begin{aligned}&\int _{S^2} -\frac{1}{2} Y^A (\nabla _B\nabla ^D C_{AD} - \nabla _A\nabla ^D C_{BD}) \nabla ^B f + \frac{1}{2}\nabla ^B Y^A \nabla _B\nabla ^D C_{AD} \cdot f.\\&\quad = \int _{S^2} \frac{1}{2} \nabla _B Y^A \nabla ^D C_{AD} \nabla ^B f + \frac{1}{2} Y^A \nabla ^D C_{AD} \Delta f - \frac{1}{2} Y^A \nabla ^D C^B_D \nabla _A\nabla _B f\\&\qquad + \int _{S^2} \frac{1}{2} Y^A \nabla ^D C_{AD} f - \frac{1}{2} \nabla ^B Y^A \nabla ^D C_{AD} \nabla _B f\\&\quad = \int _{S^2} -\frac{1}{2} Y^A \nabla ^D C_D^B (\nabla _A\nabla _B f - \frac{1}{2}\Delta f \sigma _{AB}) + \frac{1}{4} Y^A \nabla ^D C_{AD} (\Delta + 2)f \end{aligned}$$

\(\quad \square \)

Theorem B.2

Let \(F_{AB} = 2 \nabla _A\nabla _B f - \Delta f \sigma _{AB}\) and \(P_{BA} = \nabla _B\nabla ^D C_{DA} - \nabla _A\nabla ^D C_{DB}\). Then

$$\begin{aligned} \int _{S^2} \nabla ^A {{\tilde{X}}}^k \left( C_{AB} \nabla _D F^{BD} + F_{AB}\nabla _D C^{BD} + \frac{1}{2} \nabla _A (C_{BD}F^{BD} ) - f\nabla ^B P_{BA} - 3 P_{BA} \nabla ^B f \right) =0. \end{aligned}$$

Proof

We integrate by parts the last two terms to get

$$\begin{aligned}&\int _{S^2} \nabla ^A {{\tilde{X}}}^k (-2P_{BA})\nabla ^B f\\&\quad = \int _{S^2} -2\nabla ^A {{\tilde{X}}}^k (\nabla _B\nabla ^D C_{DA} - \nabla _A\nabla ^D C_{DB})\nabla ^B f\\&\quad = \int _{S^2} -2{{\tilde{X}}}^k \nabla ^D C_{DA}\nabla ^A f + 2 \nabla ^A {{\tilde{X}}}^k \nabla ^D C_{DA}\Delta f + 4 {{\tilde{X}}}^k \nabla ^D C_{DB}\nabla ^B f \\&\qquad - 2\nabla ^A {{\tilde{X}}}^k \nabla ^D C_{DB} \nabla _A\nabla ^B f\\&\quad = \int _{S^2} 2 {{\tilde{X}}}^k \nabla ^D C_{DA}\nabla ^A f -\nabla ^A {{\tilde{X}}}^k \nabla ^D C_{DB} F_{AB} + \nabla ^A {{\tilde{X}}}^k \nabla ^D C_{DA}\Delta f \\&\quad = \int _{S^2} -2 \nabla ^D {{\tilde{X}}}^k C_{DA}\nabla ^A f -2 {{\tilde{X}}}^k C_{DA} \nabla ^D\nabla ^A f \\&\qquad -\nabla ^A {{\tilde{X}}}^k \nabla _D C^{DB} F_{AB} + \nabla ^A {{\tilde{X}}}^k \nabla ^D C_{DA}\Delta f \\&\quad = \int _{S^2} 2\nabla ^A {{\tilde{X}}}^k \nabla ^D C_{DA} \nabla ^A f + \frac{1}{2}\Delta {{\tilde{X}}}^k C_{DA}F^{DA} \\&\qquad - \nabla ^A {{\tilde{X}}}^k \nabla _D C^{DB} F_{AB} + \nabla ^A {{\tilde{X}}}^k \nabla ^D C_{DA}\Delta f\\&\quad = \int _{S^2} -\nabla ^A {{\tilde{X}}}^k C_{DA}\nabla ^D(\Delta + 2)f -\frac{1}{2}\nabla ^A {{\tilde{X}}}^k \nabla _A (C_{DB}F^{DB}) \\&\qquad - \nabla ^A {{\tilde{X}}}^k \nabla _D C^{DB} F_{AB}. \end{aligned}$$

\(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, PN., Keller, J., Wang, MT. et al. Evolution of Angular Momentum and Center of Mass at Null Infinity. Commun. Math. Phys. 386, 551–588 (2021). https://doi.org/10.1007/s00220-021-04053-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04053-7

Navigation