Skip to main content
Log in

Vortex Motion for the Lake Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The lake equations

$$\begin{aligned} \left\{ \begin{aligned}&\nabla \cdot \big ( b \, {\mathbf {u}}\big ) = 0&\text {on}\ {\mathbb {R}}\times D , \\&\partial _t{\mathbf {u}} + ({\mathbf {u}}\cdot \nabla ){\mathbf {u}} = -\nabla h&\text {on}\ {\mathbb {R}}\times D , \\&{\mathbf {u}} \cdot \varvec{\nu } = 0&\text {on}\ {\mathbb {R}}\times \partial D \end{aligned} \right. \end{aligned}$$

model the vertically averaged horizontal velocity in an inviscid incompressible flow of a fluid in a basin whose variable depth \(b : D \rightarrow [0, + \infty )\) is small in comparison to the size of its two-dimensional projection \(D \subset {\mathbb {R}}^2\). When the depth b is positive everywhere in D and constant on the boundary, we prove that the vorticity and energy of solutions of the lake equations whose initial vorticity concentrates at an interior point behaves asympotically a multiple of a Dirac mass whose motion is governed by the depth function b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banica, V., Miot, E.: Evolution, interaction and collisions of vortex filaments. Differ. Integral Equ. 26(3–4), 355–388 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Benedetto, D., Caglioti, E., Marchioro, C.: On the motion of a vortex ring with a sharply concentrated vorticity. Math. Methods Appl. Sci. 23(2), 147–168 (2000). https://doi.org/10.1002/(SICI)1099-1476(20000125)23:2<147::AID-MMA108>3.3.CO;2-A

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Berger, M.S., Fraenkel, L.E.: Nonlinear desingularization in certain free-boundary problems. Commun. Math. Phys. 77(2), 149–172 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bramble, J.H., Payne, L.E.: Bounds for the first derivatives of Green’s function. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 42(8), 604–610 (1967)

    MathSciNet  MATH  Google Scholar 

  5. Bresch, D., Métivier, G.: Global existence and uniqueness for the lake equations with vanishing topography: elliptic estimates for degenerate equations. Nonlinearity 19(3), 591–610 (2006). https://doi.org/10.1088/0951-7715/19/3/004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bühler, O., Jacobson, T.E.: Wave-driven currents and vortex dynamics on barred beaches. J. Fluid Mech. 449, 313–339 (2001). https://doi.org/10.1017/S0022112001006322

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Burton, G.R.: Steady symmetric vortex pairs and rearrangements. Proc. R. Soc. Edinb. Sect. A 108(3–4), 269–290 (1988). https://doi.org/10.1017/S0308210500014669

    Article  MathSciNet  MATH  Google Scholar 

  8. Camassa, R., Holm, D.D., Levermore, C.D.: Long-time shal low-water equations with a varying bottom. J. Fluid Mech. 349, 173–189 (1997). https://doi.org/10.1017/S0022112097006721

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Centurioni, L.R.: Dynamics of vortices on a uniformly shelving beach. J. Fluid Mech. 472, 211–228 (2002). https://doi.org/10.1017/S0022112002002252

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  11. Csató, G., Dacorogna, B., Kneuss, O.: The pul lback equation for differential forms. In: Progress in Nonlinear Differential Equations and their Applications, vol. 83. Birkhäuser/Springer, New York (2012)

  12. Da Rios, L.S.: Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque. Rend. Circ. Mat. Palermo 22(1), 117–135 (1906)

    Article  Google Scholar 

  13. Dávila, J., del Pino, M., Musso, M., Wei, J.: Gluing methods for vortex dynamics in Euler flows. Arch. Ration. Mech. Anal. 235, 1467–1530 (2020). https://doi.org/10.1007/s00205-019-01448-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Dekeyser, J.: Desingularization of a Steady Vortex Pair in the Lake Equation. Available at arXiv:1711.06497 (2017)

  15. Dekeyser, J.: Asymptotic of steady vortex pair in the lake equation. SIAM J. Math. Anal. 51(2), 1209–1237 (2019). https://doi.org/10.1137/18M1170169

    Article  MathSciNet  MATH  Google Scholar 

  16. de Valeriola, S., Van Schaftingen, J.: Desingularization of vortex rings and shal low water vortices by a semilinear elliptic problem. Arch. Ration. Mech. Anal. 210(2), 409–450 (2013). https://doi.org/10.1007/s00205-013-0647-3

    Article  MathSciNet  MATH  Google Scholar 

  17. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989). https://doi.org/10.1007/BF01393835

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Dos Santos, M., Misiats, O.: Ginzburg–Landau model with small pinning domains. Netw. Heterog. Media 6(4), 715–753 (2011). https://doi.org/10.3934/nhm.2011.6.715

    Article  MathSciNet  MATH  Google Scholar 

  19. Duerinckx, M., Serfaty, S.: Mean-field dynamics for Ginzburg–Landau vortices with pinning and forcing, Art. 19. Ann. PDE 4(2), 172 (2018). https://doi.org/10.1007/s40818-018-0053-0

    Article  MATH  Google Scholar 

  20. Friedman, A., Turkington, B.: Vortex rings: existence and asymptotic estimates. Trans. Am. Math. Soc. 268(1), 1–37 (1981). https://doi.org/10.2307/1998335

    Article  MathSciNet  MATH  Google Scholar 

  21. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  22. Haroske, D.D.: On more general Lipschitz spaces. Z. Anal. Anwend. 19(3), 781–799 (2000). https://doi.org/10.4171/ZAA/980

    Article  MathSciNet  MATH  Google Scholar 

  23. Helmholtz, H.: On integrals of the hydrodynamical equations, which express vortex-motion. Philos. Mag. 33(226), 485–512 (1867). https://doi.org/10.1080/14786446708639824

    Article  Google Scholar 

  24. Huang, C.: Global solutions to the lake equations with isolated vortex regions. Quart. Appl. Math. 61(4), 613–638 (2003)

    Article  MathSciNet  Google Scholar 

  25. Jerrard, R.L., Seis, C.: On the vortex filament conjecture for Euler flows. Arch. Ration. Mech. Anal. 224(1), 135–172 (2017). https://doi.org/10.1007/s00205-016-1070-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Kato, T.: On classical solutions of the two-dimensional nonstationary Euler equation. Arch. Ration. Mech. Anal. 25, 188–200 (1967). https://doi.org/10.1007/BF00251588

    Article  MathSciNet  MATH  Google Scholar 

  27. Khesin, B., Yang, C.: Higher-Dimensional Hasimoto Transform for Vortex Membranes: Counterexamples and Generalizations. Available at arXiv:1902.08834

  28. Kirchhoff, G.: Vorlesungen über mathematische Physik. Teubner, Leipzig (1876)

    MATH  Google Scholar 

  29. Koebe, P.: Abhandlungen zur Theorie der konformen Abbildung. IV: Abbildung mehrfach zusammenhängender schlichter Bereiche auf Schlitzbereiche. Acta Math. 41, 305–344 (1918)

    Article  MathSciNet  Google Scholar 

  30. Krantz, S.G.: Geometric Function Theory: Explorations in Complex Analysis. Cornerstones, Birkhäuser, Boston (2006)

    MATH  Google Scholar 

  31. Lacave, C., Nguyen, T.T., Pausader, B.: Topography influence on the lake equations in bounded domains. J. Math. Fluid Mech. 16(2), 375–406 (2014). https://doi.org/10.1007/s00021-013-0158-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Levermore, C.D., Oliver, M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133(2), 321–339 (1997). https://doi.org/10.1006/jdeq.1996.3200

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Levermore, C.D., Oliver, M., Titi, E.S.: Global well-posedness for models of shal low water in a basin with a varying bottom. Indiana Univ. Math. J. 45(2), 479–510 (1996). https://doi.org/10.1512/iumj.1996.45.1199

    Article  MathSciNet  MATH  Google Scholar 

  34. Lieb, E.H., Loss, M.: Analysis, vol. 14, 2nd edn. Graduate Studies in Mathematics, American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  35. Lin, C.C.: On the motion of vortices in two dimensions. I: existence of the Kirchhoff–Routh function. Proc. Nat. Acad. Sci. U. S. A. 27, 570–575 (1941)

    Article  ADS  MathSciNet  Google Scholar 

  36. Lorentz, G.G.: Some new functional spaces. Ann. Math. 51(2), 37–55 (1950). https://doi.org/10.2307/1969496

    Article  MathSciNet  MATH  Google Scholar 

  37. Marchioro, C., Pulvirenti, M.: Euler evolution for singular initial data and vortex theory. Commun. Math. Phys. 91(4), 563–572 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  38. Marchioro, C., Pulvirenti, M.: Vortex methods in two-dimensional fluid dynamics. In: Lecture Notes in Physics, vol. 203. Springer, Berlin (1984)

  39. Marchioro, C., Pulvirenti, M.: Mathematical theory of incompressible nonviscous fluids. In: Applied Mathematical Sciences, vol. 96. Springer, New York (1994)

  40. Munteanu, I.: Existence of solutions for models of shal low water in a basin with a degenerate varying bottom. J. Evol. Equ. 12(2), 393–412 (2012). https://doi.org/10.1007/s00028-012-0137-3

    Article  MathSciNet  MATH  Google Scholar 

  41. Oliver, M.: Classical solutions for a generalized Euler equations in two dimensions. J. Math. Anal. Appl. 215(2), 471–484 (1997). https://doi.org/10.1006/jmaa.1997.5647

    Article  MathSciNet  MATH  Google Scholar 

  42. Oliver, M.: Justification of the shallow-water limit for a rigid-lid flow with bottom topography. Theor. Comput. Fluid Dyn. 9(3–4), 311–324 (1997). https://doi.org/10.1007/s001620050047

    Article  MATH  Google Scholar 

  43. Peregrine, D.H.: Surf zone currents. Theor. Comput. Fluid Dyn. 10(1–4), 295–309 (1998)

    Article  Google Scholar 

  44. Ricca, R.L.: The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics. Fluid Dyn. Res. 18(5), 245–268 (1996). https://doi.org/10.1016/0169-5983(96)82495-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Richardson, G.: Vortex motion in shal low water with varying bottom topography and zero Froude number. J. Fluid Mech. 411, 351–374 (2000). https://doi.org/10.1017/S0022112099008393

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Routh, E.J.: Some applications of conjugate functions. Proc. Lond. Math. Soc. 12, 73–89 (1880/81). https://doi.org/10.1112/plms/s1-12.1.73

  47. Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993). https://doi.org/10.1007/BF02921318

    Article  MathSciNet  MATH  Google Scholar 

  48. Shnirelman, A.: On the nonuniqueness of weak solution of the Euler equation. Commun. Pure Appl. Math. 50(12), 1261–1286 (1997). https://doi.org/10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.3.CO;2-4

    Article  MathSciNet  MATH  Google Scholar 

  49. Shnirelman, A.: Weak solutions with decreasing energy of incompressible Euler equations. Commun. Math. Phys. 210(3), 541–603 (2000). https://doi.org/10.1007/s002200050791

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Smets, D., Van Schaftingen, J.: Desingularization of vortices for the Euler equation. Arch. Ration. Mech. Anal. 198(3), 869–925 (2010). https://doi.org/10.1007/s00205-010-0293-y

    Article  MathSciNet  MATH  Google Scholar 

  51. Turkington, B.: On steady vortex flow in two dimensions. I. Commun. Partial Differ. Equ. 8(9), 999–1030 (1983). https://doi.org/10.1080/03605308308820293

    Article  MathSciNet  MATH  Google Scholar 

  52. Turkington, B.: On steady vortex flow in two dimensions. II. Commun. Partial Differ. Equ. 8(9), 1031–1071 (1983)

    Article  MathSciNet  Google Scholar 

  53. Turkington, B.: On the evolution of a concentrated vortex in an ideal fluid. Arch. Ration. Mech. Anal. 97(1), 75–87 (1987). https://doi.org/10.1007/BF00279847

    Article  MathSciNet  MATH  Google Scholar 

  54. Weinberger, H.F.: Symmetrization in uniformly elliptic problems. In: Studies in Mathematical Analysis and Related Topics, pp. 424–428. Stanford University Press, Stanford (1962)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Van Schaftingen.

Additional information

Communicated by C. De Lellis

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Weak Solutions of the Transport Equation

A first interesting fact is that for a transport equation with no flux through the boundary, it is equivalent to test the equation against compactly supported smooth functions or functions that are smooth up to the boundary.

Proposition A.1

Assume that \({\mathbf {u}}\in L^\infty (W^{1, 1} (D))\) and that \({\mathbf {u}}\cdot \varvec{\nu }= 0\) on \(\partial D\) in the sense of traces. If \(f_0 \in L^\infty (D)\) and \(f \in L^\infty ([0, +\infty ) \times D)\) satisfy for every \(\varphi \in C^1_c ([0, +\infty )\times D)\) the identity

$$\begin{aligned} \int _0^{+\infty }\int _{D} f\,(\partial _t \varphi + {\mathbf {u}}\cdot \nabla \varphi ) + \int _{D} f_0 \,\varphi (0, \cdot ) = 0, \end{aligned}$$

then the identity holds for every \(\varphi \in C^1_c ([0, +\infty ) \times \bar{D})\).

Proof

We consider a map \(\theta \in C^1 ((0, + \infty ))\) such that \(\theta = 0\) on \((0,\frac{1}{2})\) and \(\theta (t) = 1\) on \([1, +\infty )\) and we define for each \(n \in {{\mathbb {N}}}\), the function \(\chi _n : D \rightarrow {{\mathbb {R}}}\) for each \(x \in D\) by \(\chi _n (x) \triangleq \theta (n {{\,\mathrm{dist}\,}}(x, \partial D))\). By the smoothness assumption on \(D\), \(\chi _n \in C^1_c (D)\). Since \({\mathbf {u}}\cdot \varvec{\nu }= 0\) in the sense of traces, we have for every \(T \in [0, +\infty )\),

$$\begin{aligned} \int _0^T \int _{D} |{\mathbf {u}}\cdot \nabla \chi _n | \le C_{1} \int _0^T \int \limits _{\begin{array}{c} x \in D\\ {{\,\mathrm{dist}\,}}(x, \partial D) \le \frac{1}{n} \end{array}} |\nabla {\mathbf {u}} |, \end{aligned}$$

and thus by Lebesgue’s dominated convergence theorem,

$$\begin{aligned} \lim _{n \rightarrow \infty } \int _0^{T} \int _{D} |{\mathbf {u}}\cdot \nabla \chi _n | =0. \end{aligned}$$
(A.1)

For each \(\varphi \in C^1_c ([0, +\infty ) \times {\bar{D}})\) and every \(n \in {{\mathbb {N}}}\), we take \(\chi _n \varphi \in C^1_c ([0, +\infty ) \times D)\) as test function, and we obtain by assumption

$$\begin{aligned} \int _0^{+\infty } \int _{D} \chi _n \, f \, (\partial _t \varphi + {\mathbf {u}}\cdot \nabla \varphi ) + \int _{D} \chi _n \, f_0 \, \varphi (0, \cdot ) = - \int _0^{+\infty } \int _{D} \varphi \, f\, {\mathbf {u}}\cdot \nabla \chi _n; \end{aligned}$$

the conclusion follows by letting \(n \rightarrow \infty \), and using (A.1). \(\quad \square \)

The flow \({\mathbf {u}}\) can be integrated following DiPerna and P.-L. Lions [17] in order to provide solutions to the corresponding transport problem.

Proposition A.2

Let \(b \in C^1({\bar{D}}, (0, +\infty ))\) and assume that the velocity field satisfies \({\mathbf {u}}\in L^1_{\mathrm {loc}} ([0, +\infty ), W^{1, 1} (D) \cap L^\infty (D))\). If \({\mathbf {u}}\cdot \varvec{\nu }= 0\) in the sense of traces and if \(\nabla \cdot (b\, {\mathbf {u}}) = 0\) in \(D\) almost everywhere, then there is a unique Borel-measurable function \(X : [0, +\infty ) \times [0, +\infty ) \times D\rightarrow D\), such that

  1. (i)

    the map \((s, t) \in [0, +\infty )^2 \mapsto X (s, t, \cdot )\) is continuous for the convergence in measure,

  2. (ii)

    for every \(r, s, t \in [0, + \infty )\) and almost every \(x \in D\), one has \(X (s, t, x)= X (s, r, X (r, t, x))\),

  3. (iii)

    for every function \(f_0 \in L^\infty (D)\) and every \(s, t \in [0, +\infty )\), one has

    $$\begin{aligned} \int _{D} f_0 (X (s, t, x)) \, b (x) {\,{{\,\mathrm{d}\,}}}x = \int _{D} f_0 (x) \, b (x) {\,{{\,\mathrm{d}\,}}}x , \end{aligned}$$
  4. (iv)

    for almost every \(x \in D\),

    $$\begin{aligned} X (s, t, x) = x + \int _t^s {\mathbf {u}}(r, X (r, t, x)) {\,{{\,\mathrm{d}\,}}}r. \end{aligned}$$

Moreover, for every \(f_0 \in L^\infty (D)\), \(f_0 \circ X(0, \cdot )\) is the unique function \(f \in L^\infty ([0, +\infty ) \times D)\) that satisfies for every \(\varphi \in C^1_c ([0, +\infty )\times D)\),

$$\begin{aligned} \int _0^{+\infty }\int _{D} f(\partial _t \varphi + {\mathbf {u}}\cdot \nabla \varphi ) + \int _{D} f_0 \,\varphi (0, \cdot ) = 0 \end{aligned}$$

and \(f \in C([0, +\infty ), L^1 (D))\).

As a corollary of the above representation formula, the potential vorticity \(\omega (t)/b\) at any time \(t\ge 0\) is a rearrangement of the initial potential vorticity \(\omega _0/b\), in the sense of the weighted Lebesgue measure \({\,{{\,\mathrm{d}\,}}}\mu (x)=b(x){\,{{\,\mathrm{d}\,}}}x\).

Note that, a priori, the statements only make sense when the function \(f_0\) is Borel measurable; the proposition implies then that \(X (s, t, \cdot )\) preserves Lebesgue null sets and thus allows one to extend the statement to Lebesgue-measurable functions.

Proof of Proposition A.2

We first observe that \(\nabla \cdot {\mathbf {u}}= {\mathbf {u}}\cdot \nabla (\ln b)\) almost everywhere on \(D\) and thus \(\nabla \cdot {\mathbf {u}}\in L^\infty (D)\). The existence and the properties (i), (ii) and (iv) of X follow from the DiPerna–Lions theory [17, Theorem III.2], as does the characterization of solutions to the transport equations and the continuity of the latter [17, Corollary II.2]. By Proposition A.1, the transport equation holds for each test function \(\varphi \in C^1_c ([0, +\infty ) \times {\bar{D}})\).

Given \(f_0 \in L^\infty (D)\) as an initial data, we observe that the function \(f : [0, +\infty ) \times D\rightarrow {{\mathbb {R}}}\) defined for each \((t, x) \in [0, +\infty ) \times D\) by \(f (t, x)\triangleq f_0 (X(t, 0, x))\) satisfies the transport equation. By taking \(\varphi \in C^1_c ([0, +\infty ) \times {\bar{D}})\) defined for each \(t, x \in [0, +\infty ) \times {\bar{D}})\) by \(\varphi (t, x) \triangleq b (x) \theta (t)\), with \(\theta \in C^1_c ((0, + \infty ))\) as test function we have

$$\begin{aligned}&\int _{0}^{+\infty } \theta ' (t) \biggl (\int _{D} f_0 (X (t, 0, \cdot )) \, b\biggr ) {\,{{\,\mathrm{d}\,}}}t + \theta (0) \int _{D} f_0 \,b\nonumber \\&\quad = -\int _{0}^{+\infty } \biggl ( \int _{D} f (X (t, 0, \cdot ))\, \nabla \cdot (b\,{\mathbf {u}}(t)) \biggr ){\,{{\,\mathrm{d}\,}}}t = 0, \end{aligned}$$
(A.2)

since \(\nabla \cdot (b\, {\mathbf {u}}(t)) = 0\) almost everywhere in \(D\) for almost every \(t \in [0, +\infty )\) and the conclusion follows. \(\quad \square \)

Appendix B: Regularity of Solutions with Smooth Initial Data

We prove that when the initial vorticity is smooth enough, then weak solutions of the vorticity formulation of the lake equations have some regularity.

Proposition B.1

Assume that \(k \in {{\mathbb {N}}}\) and \(\alpha \in (0, 1)\), that \(D\) is of class \(C^{k + 1}\) and that \(b \in (C^2 \cap C^{k + 1, \alpha }) (D)\). If \(\omega _0 \in C^{k, \alpha } ({\bar{D}}, {{\mathbb {R}}})\) and if \((\omega , {\mathbf {u}}) \in L^\infty ([0, +\infty ) \times D, {{\mathbb {R}}}) \times L^\infty ( [0, +\infty ), L^2 (D, {{\mathbb {R}}}^2))\) is a weak solution to the vortex formulation of the lake equations, then for every \(T > 0\), \(\omega \in C^{k, \alpha } ([0, T] \times {\bar{D}})\) and \({\mathbf {u}}\in L^\infty ([0, T], C^{k + 1, \alpha } ({{{\bar{D}}}}, {{\mathbb {R}}}^2)) \cap C^{k, \alpha } ([0, T] \times {\bar{D}}, {{\mathbb {R}}}^2)\).

When \(k = 0\), Proposition B.1 is due to Huang [24, Theorem 4.1].

Our proof follows the same strategy as proofs of the regularity of solutions of the planar Euler equations [39, §2.4] (see also [26, §3.1]).

The first tool that we use is the fact that the velocity field generated by a bounded vorticity field satisfies a bound known as quasi-Lipschitz bound [26, Lemma 1.4]; [39, Lemma 3.1] or logarithmically Lipschitz [22].

Lemma B.2

There exists a constant \(C > 0\) such that for every \(\omega \in L^\infty (D)\) and every \(x, y \in D\), one has

$$\begin{aligned} \bigl | \nabla {\mathcal {K}}_b [\omega ] (x) - \nabla {\mathcal {K}}_b [\omega ] (y) \bigr | \le C\, |y - x | \ln \frac{2{{\,\mathrm{diam}\,}}D}{|y - x |}. \end{aligned}$$

Proof

By Proposition 3.3, we have

$$\begin{aligned} \nabla {\mathcal {K}}_b[\omega ] (x)= & {} \int _{D} \nabla G_D (x, z) \, \omega (z) \, \sqrt{b (x) \, b (z)} {\,{{\,\mathrm{d}\,}}}z\nonumber \\&+\, \frac{1}{2} \int _{D} G_D (x, z) \, \omega (z) \, \sqrt{\frac{b (z)}{b (x)}} \, \nabla b (x) {\,{{\,\mathrm{d}\,}}}z \nonumber \\&+\, \int _{D} \nabla R_b (x, z) \, \omega (z) {\,{{\,\mathrm{d}\,}}}z. \end{aligned}$$
(B.1)

We first have the estimate

$$\begin{aligned}&\biggl | \int _{D} \nabla G_D (y, z) \, \omega (z) \, \sqrt{b (y)\, b (z)} {\,{{\,\mathrm{d}\,}}}z - \int _{D} \nabla G_D (x, z) \, \omega (z) \, \sqrt{b (x)\, b (z)} {\,{{\,\mathrm{d}\,}}}z \biggr |\nonumber \\&\quad \le C_{1} \, \Vert {\omega }\Vert _{L^\infty (D)} \, |y - x | \ln \frac{2{{\,\mathrm{diam}\,}}(D)}{|y - x |} \end{aligned}$$
(B.2)

(see [39, Lemma 2.3.1 and Appendix 2.3]). Next, we have

$$\begin{aligned}&\biggl | \int _{D} G_D (y, z) \, \omega (z) \, \sqrt{\frac{b (z)}{b (x)}} \, \nabla b (y) {\,{{\,\mathrm{d}\,}}}z - \int _{D} G_D (x, z) \, \omega (z) \, \sqrt{\frac{b (z)}{b (x)}} \, \nabla b (x) {\,{{\,\mathrm{d}\,}}}z \biggr |\nonumber \\&\quad \le \frac{|\nabla b (y) - \nabla b (x) |}{\sqrt{b (x)}} \, \int _{D} G_D (x, z)\, |\omega (z) | \, \sqrt{b (z)} {\,{{\,\mathrm{d}\,}}}z\nonumber \\&\qquad +\, C_{2} \frac{|\nabla b (x) |}{\sqrt{b (x)}} \int _{D} \bigl |G_D (y, z) - G_D (x, z) \bigr | \, |\omega (z) | \, \sqrt{b (z)} {\,{{\,\mathrm{d}\,}}}z . \end{aligned}$$
(B.3)

We compute now by Proposition 3.5,

$$\begin{aligned} \begin{aligned} \int _{D} |G_D (y, z) - G_D (x, z) |{\,{{\,\mathrm{d}\,}}}z&\le \int _0^1 \int _{D} |\nabla G_D ((1 - s) x + s y, z) | \,|y - x |{\,{{\,\mathrm{d}\,}}}z {\,{{\,\mathrm{d}\,}}}t\\&\le \int _0^1 \int _{D} \frac{C_{3}\, |y - x |}{|(1 - s) x + s y - z |} {\,{{\,\mathrm{d}\,}}}z {\,{{\,\mathrm{d}\,}}}s \le C_{4} \, |y - x |. \end{aligned} \end{aligned}$$
(B.4)

By (B.3) and (B.4), we deduce, since the derivative of \(\nabla b\) is bounded, that the gap

$$\begin{aligned} \biggl | \int _{D} G_D (y, z) \, \omega (z) \, \sqrt{\frac{b (z)}{b (y)}} \, \nabla b (y) {\,{{\,\mathrm{d}\,}}}z - \int _{D} G_D (x, z) \, \omega (z) \, \sqrt{\frac{b (z)}{b (x)}} \, \nabla b (x) {\,{{\,\mathrm{d}\,}}}z \biggr | \end{aligned}$$
(B.5)

is bounded by

$$\begin{aligned} C_{5} \, \Vert {\omega }\Vert _{L^\infty (D)} \, |y - x |. \end{aligned}$$

In order to control the variation of \(\nabla R_b(\cdot ,z)\), we recall that by the Proof of Proposition 3.3, \(R_b=S_b+Q_b\) for some function \(Q_b\in C^2(D\times D)\) defined in Proposition 2.4 and for some function \(S_b\) constructed in the Proof of Proposition 3.1 in such a way that for each \(z\in D\), the function \(S_b (\cdot , y) \in W^{1, 2}_0 (D)\) is the unique solution of the elliptic problem

Hence, in order to conclude the proof, it is sufficient to focus on the \(S_b\)-term. We recall that for all \(z\in D\) the function \(S_b\) admits the integral representation

$$\begin{aligned} S_b(x,z) \end{aligned}$$

and moreover, \(S_b\) is continuous and symmetric on \(D\times D\) (Proposition 3.1). Therefore, we have for all \(x,z\in D\):

or equivalently, using the symmetry of the Green’s function :

In particular, a direct application of Fubini’s theorem shows that, for almost-every \(x\in D\), we have

(B.6)

Since the \(L^p\)-norms of Green’s functions are uniformly bounded on as y varies in \(D\) [54], we may apply estimates (B.2) and (B.5) to obtain

$$\begin{aligned}&\biggl | \int _{D} \nabla S_b (x, z) \, \omega (z) {\,{{\,\mathrm{d}\,}}}z - \int _{D} \nabla S_b (x, z) \, \omega (z) {\,{{\,\mathrm{d}\,}}}z \biggr | \\&\quad \le C_{6} \, \Vert {\omega }\Vert _{L^\infty (D)} \, |y - x | \ln \frac{2{{\,\mathrm{diam}\,}}(D)}{|y - x |} , \end{aligned}$$

and therefore

$$\begin{aligned}&\biggl | \int _{D} \nabla R_b (x, z) \, \omega (z) {\,{{\,\mathrm{d}\,}}}z - \int _{D} \nabla R_b (x, z) \, \omega (z) {\,{{\,\mathrm{d}\,}}}z \biggr | \nonumber \\&\quad \le C_{7} \, \Vert {\omega }\Vert _{L^\infty (D)} \, |y - x | \ln \frac{2{{\,\mathrm{diam}\,}}(D)}{|y - x |} . \end{aligned}$$
(B.7)

The conclusion follows from (B.1), (B.2), (B.5) and (B.7). \(\quad \square \)

The next tool is Grönwall type estimate for a logarithmic perturbation of linear growth.

Lemma B.3

Let \(A, B, C \in [0, +\infty )\), \(A<C\) and let f be a continuous function from \([0,+\infty )\) to (0, C), that is: \(f \in C([0,+\infty ), (0, C))\). If for every \(t \in [0, + \infty )\),

$$\begin{aligned} f (t) \le A + B \int _0^t f (s) \ln \frac{C}{f (s)} {\,{{\,\mathrm{d}\,}}}s, \end{aligned}$$

then for every \(t \in [0, + \infty )\),

$$\begin{aligned} f (t) \le C \exp \Bigl (- \ln \tfrac{C}{A} e^{-B t}\Bigr ). \end{aligned}$$

Proof

We observe that if the function \(u \in C^1 ({{\mathbb {R}}},(0, +C))\) satisfies for every \(t \in I\) the equation

$$\begin{aligned} u'(t) = B \, u (t) \ln \frac{C}{u (t)}, \end{aligned}$$

then

$$\begin{aligned} u(t) = C \exp \bigl (- e^{-Bt}\ln \tfrac{C}{u (0)} \bigr ) \end{aligned}$$

and the conclusion follows then by comparison. \(\quad \square \)

We finally rely on the next classical regularity property of Lagrangian flows.

Lemma B.4

If \({\mathbf {u}}\in C^{k - 1} ([0, +\infty )\times {\bar{D}}, {{\mathbb {R}}}^2) \cap C ([0, +\infty ), C^{k} ({\bar{D}}, {{\mathbb {R}}}^2))\) and if the function \(X \in C^1 ([0, +\infty ), C({\bar{D}}, {\bar{D}}))\) satisfies

$$\begin{aligned} \left\{ \begin{aligned}&\partial _t X (t, x) = {\mathbf {u}}(t, X (t, x))&\text {if }t \in [0, +\infty ) \text { and }x \in D,\\&X (0, x) = x&\text {if }x \in D, \end{aligned} \right. \end{aligned}$$

then \(X \in C^k ([0, +\infty ) \times D)\). If moreover \({\mathbf {u}}\in C^{k - 1, \alpha } ([0, +\infty )\times {\bar{D}}, {{\mathbb {R}}}^2) \cap L^\infty ([0, +\infty ), C^{k, \alpha } ({\bar{D}}, {{\mathbb {R}}}^2))\), then \(X \in C^{k, \alpha } ([0, +\infty ) \times D)\).

Proof

The first part is classical (see for example [10, §1.7]). For the second part, we first have by the first part \(X \in C^{k} ({{\mathbb {R}}}\times {\bar{D}}, {\bar{D}})\) and thus by the chain rule for Hölder continuous functions (see for example [11, Theorem 16.31]) \(\partial _t X \in C^{k - 1, \alpha } ({{\mathbb {R}}}\times {\bar{D}}, {\bar{D}})\).

Next we observe that for every \(T > 0\) and \(t \in [0, T]\), we have

$$\begin{aligned}&|D_x^k X (t, y) - D_x^k X (t, x) |\\&\quad \le \int _0^t |D^k f (X (s, y)) [D_x^k X (s, y)] - D^k f (X (s, x)) [D_x^k X (s, x)] | {\,{{\,\mathrm{d}\,}}}s + C_{1} |y - x |\\&\quad \le C_{2} \int _0^t |D_x^k X (s, y) - D^k_x X (s, x) | {\,{{\,\mathrm{d}\,}}}s + C_{3} |y - x |^\alpha , \end{aligned}$$

and it follows then from the classical Grönwall inequality that

$$\begin{aligned} |D_x^k X (t, y) - D_x^k X (t, x) | \le C_{4} |y - x |^\alpha . \end{aligned}$$

\(\square \)

Proof of Proposition B.1

By Propositions 2.6, A.2 is applicable to \(f_0 = \omega _0/b\) and implies that for every \(t \in {{\mathbb {R}}}\),

$$\begin{aligned} \omega (t, x) = \frac{b (x)}{b (X (t, x))} \, \omega _0 (X (t, x)). \end{aligned}$$

By Proposition A.2 and Lemma B.2, we have for every \(x, y \in D\),

$$\begin{aligned}&|X (t, y) - X (t, x) |\\&\quad \le |y - x | + C_{1} \, \Bigg ( \bigl (\Vert {\omega _0}\Vert _{L^\infty (D)} + \Vert {\Gamma }\Vert _{}\bigr ) \, \int _0^t |X (s, y) \\&\qquad -\, X (s, x) | \ln \frac{2 {{\,\mathrm{diam}\,}}D}{|X (s, y) - X (s, x) |}{\,{{\,\mathrm{d}\,}}}s\Bigg ). \end{aligned}$$

It follows then by Lemma B.3, that

$$\begin{aligned} |X (t, y) - X (t, x) | \le C_{2} \exp \Bigl (- \alpha e^{-C_{3} t} \ln \frac{2 {{\,\mathrm{diam}\,}}D}{|y - x |}) \Bigr ) =C_{4} \Bigl (\frac{|y - x |}{2 {{\,\mathrm{diam}\,}}D}\Bigr )^{ \alpha \exp ({- C_{3} t})}. \end{aligned}$$

This implies thus that

$$\begin{aligned} |\omega (t, y) - \omega (t, x) | \le C_{5} \Bigl (\frac{|y - x |}{2 {{\,\mathrm{diam}\,}}D}\Bigr )^{\alpha \exp ({-C_{3} t})}. \end{aligned}$$

By the representation formula for the velocity (2.7) and classical regularity estimates [21, Theorem 6.8], it follows then that we have the inclusion \({\mathbf {u}}\in C ([0, +\infty ), C^1 (D))\). By classical regularity theory of the Lagrangian flow, this implies that \(X \in C^1 ([0, + \infty ) \times {\bar{D}}, {\bar{D}})\) and thus by composition \(\omega \in C^{0, \alpha } ([0, T] \times D)\). By regularity estimates [21, Theorem 6.8] we have then \({\mathbf {u}}\in L^\infty ([0, T], C^{1, \alpha } ({{{\bar{D}}}}))\) and \(u \in C^{0, \alpha } ([0, T] \times {\bar{D}})\).

We assume now that \({\mathbf {u}}\in L^\infty ([0, T], C^{k, \alpha } ({{{\bar{D}}}})) \cap C^{k - 1, \alpha } ([0, T] \times {\bar{D}})\) and that \(\omega _0 \in C^{k, \alpha } ({\bar{D}})\). By regularity of the Lagrangian flow (Lemma B.4), we have \(X \in C^{k, \alpha } (D)\) and thus \(\omega \in C^{k, \alpha } ([0, T] \times D)\). By classical regularity estimates, this implies that \({\mathbf {u}}\in L^\infty ([0, T], C^{k + 1, \alpha } ({{{\bar{D}}}})) \cap C^{k, \alpha } ([0, T] \times {\bar{D}})\). \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekeyser, J., Van Schaftingen, J. Vortex Motion for the Lake Equations. Commun. Math. Phys. 375, 1459–1501 (2020). https://doi.org/10.1007/s00220-020-03742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03742-z

Navigation