Skip to main content
Log in

Convergence to Normal Forms of Integrable PDEs

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In an infinite dimensional Hilbert space we consider a family of commuting analytic vector fields vanishing at the origin and which are nonlinear perturbations of some fundamental linear vector fields. We prove that one can construct by the method of Poincaré normal form a local analytic coordinate transformation near the origin transforming the family into a normal form. The result applies to the KdV and NLS equations and to the Toda lattice with periodic boundary conditions. One gets existence of Birkhoff coordinates in a neighborhood of the origin. The proof is obtained by directly estimating, in an iterative way, the terms of the Poincaré normal form and of the transformation to it, through a rapid convergence algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Méthodes mathématiques de la mécanique classique. Mir, Moscow (1976)

    Google Scholar 

  2. Bambusi, D.: Birkhoff normal form for some nonlinear PDEs. Commun. Math. Phys. 234(2), 253–285 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bambusi, D.: Galerkin averaging method and Poincaré normal form for some quasilinear PDEs. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(4), 669–702 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Bambusi, D.: A Birkhoff normal form theorem for some semilinear PDEs. In: Craig, W. (ed.) Hamiltonian Dynamical Systems and Applications. NATO Sci. Peace Secur. Ser. B Phys. Biophys., pp. 213–247. Springer, Dordrecht (2008)

    Google Scholar 

  5. Bättig, D., Bloch, A.M., Guillot, J.-C., Kappeler, T.: On the symplectic structure of the phase space for periodic KdV, Toda, and defocusing NLS. Duke Math. J. 79(3), 549–604 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Bambusi, D., Delort, J.-M., Grébert, B., Szeftel, J.: Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Commun. Pure Appl. Math. 60(11), 1665–1690 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Bambusi, D., Grébert, B.: Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J. 135(3), 507–567 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Berti, M., Kappeler, T., Montalto, R.: Large KAM tori for perturbations of the defocusing NLS equation. Astérisque, 403, viii+148 (2018)

  9. Bambusi, D., Maspero, A.: Birkhoff coordinates for the Toda lattice in the limit of infinitely many particles with an application to FPU. J. Funct. Anal. 270(5), 1818–1887 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Bruno, A.D.: Analytical form of differential equations. Trans. Mosc. Math. Soc 25, 131–288 (1971). 26, 199–239 (1972), 1971–1972

  11. Dickey, L.A.: Soliton Equations and Hamiltonian Systems. Advanced Series in Mathematical Physics, vol. 26, 2nd edn. World Scientific Publishing Co., Inc., River Edge (2003)

    MATH  Google Scholar 

  12. Grébert, B., Kappeler, T.: The defocusing NLS equation and its normal form. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2014)

    MATH  Google Scholar 

  13. Giorgilli, A., Locatelli, U.: Kolmogorov theorem and classical perturbation theory. Z. Angew. Math. Phys. 48(2), 220–261 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Henrici, A., Kappeler, T.: Global Birkhoff coordinates for the periodic Toda lattice. Nonlinearity 21(12), 2731–2758 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Ito, H.: Convergence of Birkhoff normal forms for integrable systems. Comment. Math. Helv. 64, 412–461 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Ito, H.: Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case. Math. Ann. 292, 411–444 (1992)

    MathSciNet  MATH  Google Scholar 

  17. Kappeler, T., Lohrmann, P., Topalov, P., Zung, N.T.: Birkhoff coordinates for the focusing NLS equation. Commun. Math. Phys. 285(3), 1087–1107 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Kappeler, T., Pöschel, J.: KdV & KAM, Volume 45 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics). Springer, Berlin, (2003)

  19. Kuksin, S., Perelman, G.: Vey theorem in infinite dimensions and its application to KdV. Discrete Contin. Dyn. Syst. 27(1), 1–24 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct. Anal. Appl. 21, 192–205 (1987)

    MathSciNet  MATH  Google Scholar 

  21. Locatelli, U., Meletlidou, E.: Convergence of Birkhoff normal form for essentially isochronous systems. Meccanica 33(2), 195–211 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19(5), 1156–1162 (1978)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Maspero, A.: Tame majorant analyticity for the Birkhoff map of the defocusing nonlinear Schrödinger equation on the circle. Nonlinearity 31(5), 1981–2030 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Maspero, A., Procesi, M.: Long time stability of small finite gap solutions of the cubic nonlinear Schrödinger equation on \({\mathbb{T}}^2\). J. Differ. Equ. 265(7), 3212–3309 (2018)

    ADS  MATH  Google Scholar 

  25. Nikolenko, N.V.: The method of Poincaré normal form in problems of integrability of equations of evolution type. Russ. Math. Surv. 41, 63–114 (1986)

    MATH  Google Scholar 

  26. Rüssmann, H.: Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung. Math. Ann. 169, 55–72 (1967)

    MathSciNet  MATH  Google Scholar 

  27. Stolovitch, L.: Singular complete integrabilty. Publ. Math. I.H.E.S. 91, 133–210 (2000)

    MATH  Google Scholar 

  28. Stolovitch, L.: Normalisation holomorphe d’algèbres de type Cartan de champs de vecteurs holomorphes singuliers. Ann. Math. 161, 589–612 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Stolovitch, L.: Normal forms of holomorphic dynamical systems. In: Craig, W. (ed.) Hamiltonian Dynamical Systems and Applications, pp. 249–284. Springer, Berlin (2008)

    MATH  Google Scholar 

  30. Treves, F.: An algebraic characterization of the Korteweg-de Vries hierarchy. Duke Math. J. 108(2), 251–294 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Vey, J.: Sur certains systèmes dynamiques séparables. Am. J. Math. 100, 591–614 (1978)

    MathSciNet  MATH  Google Scholar 

  32. Vey, J.: Algèbres commutatives de champs de vecteurs isochores. Bull. Soc. Math. France 107, 423–432 (1979)

    MathSciNet  MATH  Google Scholar 

  33. Zung, N.T.: Convergence versus integrability in Poincaré–Dulac normal form. Math. Res. Lett. 9(2–3), 217–228 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Zung, N.T.: Convergence versus integrability in Birkhoff normal form. Ann. Math. (2) 161(1), 141–156 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Michela Procesi for many discussions. We acknowledge the support of Università degli Studi di Milano and of GNFM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Bambusi.

Additional information

Communicated by C. Liverani

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of L. Stolovitch was supported by ANR-FWF Grant “ANR-14-CE34-0002-01” for the Project “Dynamics and CR geometry” and by ANR Grant “ANR-15-CE40-0001-03” for the Project “BEKAM”.

Appendix A. A Technical Lemma

Appendix A. A Technical Lemma

Lemma A.1

Equation (5.63) holds.

Proof

Denote by \(d_k\) the l.h.s. of (5.63), one has

$$\begin{aligned}&d_k=\exp \left( \sum _{l=0}^{k-1}\ln m^{-\frac{b}{m}}\right) =\exp \left( -\sum _{l=0}^{k-1} \frac{b}{2^l}\ln 2^l\right) =\exp \left( -\frac{b\ln 2}{2}\sum _{l=0}^{k-1} \frac{l}{2^{l-1}}\right) \\&\quad =\exp \left( -\frac{b\ln 2}{2}4\left( 1-\frac{k+1}{2^k}\right) \right) , \end{aligned}$$

where we used the formula

$$\begin{aligned} \sum _{l=0}^{k-1} \frac{l}{2^{l-1}}=4\left( 1-\frac{k+1}{2^k}\right) . \end{aligned}$$

Now, the result immediately follows. \(\quad \square \)

Lemma A.2

Equation (5.64) holds.

Proof

We use the discrete analogue of the formula of the Duhamel formula, namely we make the substitution \(r_k=d_ks_k\), where \(d_k\) was defined in the proof of Lemma A.1. One gets

$$\begin{aligned} r_{k+1}=d_{k+1}s_{k+1}=q_{2^k}d_ks_{k+1}=q_{2^k}(d_ks_k-\delta _k) \end{aligned}$$

and thus

$$\begin{aligned} s_{k+1}=s_k-\frac{\delta _k}{d_k} ,\quad s_1=\frac{r_1}{d_1}=r_1 , \end{aligned}$$

from which

$$\begin{aligned} s_k=s_1-\sum _{l=1}^{k-1}\frac{\delta _l}{d_l}. \end{aligned}$$

Now, one has

$$\begin{aligned} \sum _{l=1}^{k-1}\frac{\delta _l}{d_l}=\sum _{l=1}^{k-1}\frac{\delta }{4^l} \frac{4^b}{4^{b\frac{l+1}{2^l}}}\le \sum _{l=1}^{k-1}\frac{\delta }{4^l} {4^b}=\frac{4^b}{3}\delta . \end{aligned}$$

Thus,

$$\begin{aligned} r_k\ge d_k\left( \frac{r_1}{d_1}- \frac{4^b}{3}\delta \right) . \end{aligned}$$

\(\square \)

Lemma A.3

Equation (5.66) holds.

Proof

The first inequality is trivial. We discuss the second one. Using the definition of \(r_{k+1}\), we have

$$\begin{aligned} \frac{\epsilon _k}{r_k-r_{k+1}}=\frac{\epsilon _k}{r_k(1-q_{2^k})+ q_{2^k}\delta _k} \le \frac{\epsilon _k}{r_k(1-q_{2^k})} \ ; \end{aligned}$$
(A.86)

now, one has

$$\begin{aligned} 1-q_m=1-\exp \left( -\frac{b}{m}\ln m\right) , \end{aligned}$$

which is of the form \(1-e^{-x}\) with x varying from 0 to \(\frac{b}{2}\ln 2\). Remarking that in an interval \([0,x_0]\) one has

$$\begin{aligned} 1-e^{-x}\ge e^{-x_0}x , \end{aligned}$$

we get

$$\begin{aligned} 1-q_m\ge 2^{-b/2}\left( \frac{b}{m}\ln m\right) =\frac{b}{2^{k+b/2}}\ln 2^k=\frac{k}{2^k} \frac{b}{2^{b/2}}\ln 2 , \end{aligned}$$

and thus, for \(k\ge 1\),

$$\begin{aligned} \frac{\epsilon _k}{r_k(1-q_{2^k})}\le \frac{\epsilon _0}{r_{\infty }} \frac{2^{b/2}}{b\ln 2}\frac{2^k}{k}\frac{1}{4^k}=\frac{\epsilon _0}{r_{\infty }} \frac{2^{b/2}}{b\ln 2}\frac{1}{k2^k}. \end{aligned}$$

Now one has

$$\begin{aligned}&\sum _{k\ge 1}\frac{x^k}{k}=\sum _{k\ge 1}\int _0^xy^{k-1}dy=\sum _{k\ge 0 }\int _0^xy^{k}dy=\int _0^x\frac{1}{1-y}dy\\&\quad =\left[ -\ln \left| 1-y\right| \right] _0^x =-\ln \left| 1-x\right| , \end{aligned}$$

which, for \(x=1/2\), gives

$$\begin{aligned} \sum _{k\ge 1}\frac{1}{k2^k}=\ln 2 , \end{aligned}$$

and thus

$$\begin{aligned} \sum _{l\ge {2}}\frac{\epsilon _{l-1}}{ {r_{l-1}-r_l}}\le \frac{\epsilon _0}{r_{\infty }} 2^{b/2}. \end{aligned}$$

adding the first term, namely \(\frac{8 C}{8C-1}\frac{\epsilon _0}{r_0}\), one gets the thesis immediately follows. \(\quad \square \)

Lemma A.4

Let \(\mathbf{F}\) be a summable normally analytic vector fields with \(F^i\) having a zero of order m at the origin for all i. Let \(0<\alpha \le 1\), then

$$\begin{aligned} \left\| \underline{\mathbf{F}} \right\| _{\alpha r}\le \alpha ^m\left\| \underline{\mathbf{F}} \right\| _{r}. \end{aligned}$$
(A.87)

Proof

Consider the function \({\underline{\mathbf{F}}}(z)=\sum _{Q,i}F_{Q,i}z^Q\vec {e}_i\); since all the coefficients are positive one has, for any i,

$$\begin{aligned} \sum _{Q}F_{Q,i}(\alpha z)^Q=\alpha ^m\sum _{Q,i}\alpha ^{|Q|-m}F_{Q,i}z^Q\le \alpha ^m\sum _{Q}F_{Q,i}z^Q \end{aligned}$$

Thus one gets

$$\begin{aligned} \sup _{\left\| z \right\| \le \alpha r}\left\| {\underline{\mathbf{F}}}(z) \right\| _+=\sup _{\left\| z \right\| \le r}\left\| {\underline{\mathbf{F}}}(\alpha z) \right\| _+ \le \alpha ^m \sup _{\left\| z \right\| \le r}\left\| {\underline{\mathbf{F}}}(z) \right\| _+\ . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bambusi, D., Stolovitch, L. Convergence to Normal Forms of Integrable PDEs. Commun. Math. Phys. 376, 1441–1470 (2020). https://doi.org/10.1007/s00220-019-03661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03661-8

Navigation