Skip to main content
Log in

Spin Systems on Bethe Lattices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In an extremely influential paper Mézard and Parisi put forward an analytic but non-rigorous approach called the cavity method for studying spin systems on the Bethe lattice, i.e., the random d-regular graph Mézard and Parisi (Eur Phys J B 20:217–233, 2001). Their technique was based on certain hypotheses; most importantly, that the phase space decomposes into a number of Bethe states that are free from long-range correlations and whose marginals are given by a recurrence called Belief Propagation. In this paper we establish this decomposition rigorously for a very general family of spin systems. In addition, we show that the free energy can be computed from this decomposition. We also derive a variational formula for the free energy. The general results have interesting ramifications on several special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Sometimes the d-regular infinite tree is referred to as the ‘Bethe lattice’. However, as Mézard and Parisi point out, the d-regular infinite tree does not provide a particularly useful framework for the study of spin interactions because almost all sites belong to the boundary of the tree. The random d-regular graph, which they and hence we call the Bethe lattice, provides a useful way out: while the local geometry around a given vertex is just a d-regular tree, at long distances this tree ‘wraps around’.

  2. The expression (1.1) is equivalent to the possibly more familiar formula \(\mu _{{\mathbb {G}}}(\sigma )\propto \exp \left( {\beta \sum _{vw}\sigma _v\sigma _w }\right) \).

  3. The arguments in the appendix are special cases of more general results on the cut metric from [18].

References

  1. Abbe, E.: Community detection and stochastic block models: recent developments. arXiv:1703.10146 (2017)

  2. Achlioptas, D., Hassani, S., Macris, N., Urbanke, R.: Bounds for random constraint satisfaction problems via spatial coupling. In: Proceedings of 27th SODA, pp. 469–479 (2016)

  3. Achlioptas, D., Moore, C.: Random \(k\)-SAT: two moments suffice to cross a sharp threshold. SIAM J. Comput. 36, 740–762 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Achlioptas, D., Naor, A.: The two possible values of the chromatic number of a random graph. Ann. Math. 162, 1333–1349 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard optimization problems. Nature 435, 759–764 (2005)

    ADS  Google Scholar 

  6. Achlioptas, D., Peres, Y.: The threshold for random \(k\)-SAT is \(2^k \ln 2 - O(k)\). J. AMS 17, 947–973 (2004)

    MATH  Google Scholar 

  7. Alberici, D., Contucci, P.: Solution of the monomer-dimer model on locally tree-like graphs. Rigorous results. Commun. Math. Phys. 331, 975–1003 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Auffinger, A., Jagannath, A.: Thouless–Anderson–Palmer equations for conditional Gibbs measures in the generic p-spin glass model. arXiv:1612.06359 (2016)

  9. Banks, J., Moore, C., Neeman, J., Netrapalli, P.: Information-theoretic thresholds for community detection in sparse networks. In: Proceedings of 29th COLT, pp. 383–416 (2016)

  10. Bapst, V., Coja-Oghlan, A.: Harnessing the Bethe free energy. Random Struct. Algorithms 49, 694–741 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Bapst, V., Coja-Oghlan, A., Hetterich, S., Rassmann, F., Vilenchik, D.: The condensation phase transition in random graph coloring. Commun. Math. Phys. 341, 543–606 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Barbier, J., Macris, N.: The adaptive interpolation method: a simple scheme to prove replica formulas in Bayesian inference. arXiv:1705.02780 (2017)

  13. Barbier, J., Krzakala, F., Zdeborová, L., Zhang, P.: The hard-core model on random graphs revisited. J. Phys. Conf. Ser. 473, 12–21 (2013)

    Google Scholar 

  14. Bayati, M., Gamarnik, D., Tetali, P.: Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. Ann. Probab. 41, 4080–4115 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Bethe, H.: Statistical theory of superlattices. Proc. R. Soc. Lond. A 150, 552–558 (1935)

    ADS  MATH  Google Scholar 

  16. Coja-Oghlan, A., Efthymiou, C., Hetterich, S.: On the chromatic number of random regular graphs. J. Comb. Theory Ser. B 116, 367–439 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Coja-Oghlan, A., Efthymiou, C., Jaafari, N., Kang, M., Kapetanopoulos, T.: Charting the replica symmetric phase. Commun. Math. Phys. 359, 603–698 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Coja-Oghlan, A., Hahn-Klimroth, M.: The cut metric for probability distributions. arXiv:1905.13619

  19. Coja-Oghlan, A., Krzakala, F., Perkins, W., Zdeborova, L.: Information-theoretic thresholds from the cavity method. Adv. Math. 333, 694–795 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Coja-Oghlan, A., Panagiotou, K.: Catching the \(k\)-NAESAT threshold. In: Proceedings of 44th STOC, pp. 899–908 (2012)

  21. Coja-Oghlan, A., Panagiotou, K.: The asymptotic \(k\)-SAT threshold. Adv. Math. 288, 985–1068 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Coja-Oghlan, A., Perkins, W.: Belief Propagation on replica symmetric random factor graph models. Annales de l’institut Henri Poincare D 5, 211–249 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Coja-Oghlan, A., Perkins, W.: Bethe states of random factor graphs. Commun. Math. Phys. 366, 173–201 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Coja-Oghlan, A., Perkins, W., Skubch, K.: Limits of discrete distributions and Gibbs measures on random graphs. Eur. J. Comb. 66, 37–59 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Coja-Oghlan, A., Zdeborová, L.: The condensation transition in random hypergraph 2-coloring. In: Proceedings of 23rd SODA, pp. 241–250 (2012)

  26. Contucci, P., Dommers, S., Giardina, C., Starr, S.: Antiferromagnetic Potts model on the Erdős-Rényi random graph. Commun. Math. Phys. 323, 517–554 (2013)

    ADS  MATH  Google Scholar 

  27. Dani, V., Moore, C.: Independent sets in random graphs from the weighted second moment method. In: Proceedings of 15th RANDOM, pp. 472–482 (2011)

    Google Scholar 

  28. Dembo, A., Montanari, A.: Gibbs measures and phase transitions on sparse random graphs. Braz. J. Probab. Stat. 24, 137–211 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Dembo, A., Montanari, A.: Ising models on locally tree-like graphs. Ann. Appl. Probab. 20, 565–592 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Dembo, A., Montanari, A., Sun, N.: Factor models on locally tree-like graphs. Ann. Probab. 41, 4162–4213 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Diaconis, P., Janson, S.: Graph limits and exchangeable random graphs. Rend. Mat. Appl. 28, 33–61 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Ding, J., Sly, A., Sun, N.: Satisfiability threshold for random regular NAE-SAT. Commun. Math. Phys. 341, 435–489 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large \(k\). In: Proceedings of 47th STOC, pp. 59–68 (2015)

  34. Ding, J., Sly, A., Sun, N.: Maximum independent sets on random regular graphs. Acta Math. 217, 263–340 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Franz, S., Leone, M.: Replica bounds for optimization problems and diluted spin systems. J. Stat. Phys. 111, 535–564 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Frieze, A., Kannan, R.: Quick approximation to matrices and applications. Combinatorica 19, 175–220 (1999)

    MathSciNet  MATH  Google Scholar 

  37. Giurgiu, A., Macris, N., Urbanke, R.: Spatial coupling as a proof technique and three applications. IEEE Trans. Inf. Theory 62, 5281–5295 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1–12 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Janson, S.: Graphons, cut norm and distance, couplings and rearrangements. N. Y. J. Math. 4 (2013)

  40. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, Hoboken (2000)

    MATH  Google Scholar 

  41. Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G., Zdeborová, L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. 104, 10318–10323 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Krzakala, F., Zdeborová, L.: Potts glass on random graphs. Europhys. Lett. 81, 57005 (2008)

    ADS  Google Scholar 

  43. Lelarge, M., Oulamara, M.: Replica bounds by combinatorial interpolation for diluted spin systems. J. Stat. Phys. 173, 917–940 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Lovász, L.: Large networks and graph limits. American Mathematical Society, Providence, Rhode Island, USA (2012)

  45. Mézard, M.: Mean-field message-passing equations in the Hopfield model and its generalizations. Phys. Rev. E 95, 022117 (2017)

    ADS  MathSciNet  Google Scholar 

  46. Mézard, M., Montanari, A.: Information, Physics and Computation. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  47. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297, 812–815 (2002)

    ADS  Google Scholar 

  48. Mézard, M., Parisi, G.: The Bethe lattice spin glass revisited. Eur. Phys. J. B 20, 217–233 (2001)

    ADS  MathSciNet  Google Scholar 

  49. Mézard, M., Parisi, G.: The cavity method at zero temperature. J. Stat. Phys. 111, 1–34 (2003)

    MathSciNet  MATH  Google Scholar 

  50. Moore, C.: The computer science and physics of community detection: landscapes, phase transitions, and hardness. arXiv:1702.00467 (2017)

  51. Mossel, E., Neeman, J., Sly, A.: Reconstruction and estimation in the planted partition model. Probab. Theory Relat. Fields 162, 431–461 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Panchenko, D.: Spin glass models from the point of view of spin distributions. Ann. Probab. 41, 1315–1361 (2013)

    MathSciNet  MATH  Google Scholar 

  53. Panchenko, D.: Structure of finite-RSB asymptotic Gibbs measures in the diluted spin glass models. J. Stat. Phys. 162, 1–42 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Panchenko, D.: The Sherrington–Kirkpatrick Model. Springer, Berlin (2013)

    MATH  Google Scholar 

  55. Panchenko, D., Talagrand, M.: Bounds for diluted mean-fields spin glass models. Probab. Theory Relat. Fields 130, 319–336 (2004)

    MathSciNet  MATH  Google Scholar 

  56. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  57. Talagrand, M.: Mean Field Models for Spin Glasses. Volumes I and II. Springer, Berlin (2011)

    MATH  Google Scholar 

  58. Zdeborová, L., Krzakala, F.: Statistical physics of inference: thresholds and algorithms. Adv. Phys. 65, 453–552 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

The first author thanks Max Hahn-Klimroth for helpful discussions on the cut metric.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Coja-Oghlan.

Additional information

Communicated by H. Spohn

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of Lemmas 3.6 and 7.12

The proof of Lemma 3.6 requires the regularity lemma for measures from [24].Footnote 3 Let \(\lambda \) denote the Lebesgue measure. For \(\mu \in \mathscr {K}\) and measurable \(S,X\subset [0,1]\) we write

$$\begin{aligned} \mu _{S,X}=\frac{1}{\lambda (S)\lambda (X)}\int _S\int _X\mu _{s,x}{\mathrm d}x{\mathrm d}s\in \mathscr {P}(\Omega ), \end{aligned}$$

with the convention that \(\mu _{S,X}\) is uniform if \(\lambda (S)\lambda (X)=0\). Further, let \(\varvec{X}=(X_1,\ldots ,X_K),\varvec{S}=(S_1,\ldots ,S_L)\) be a partitions of [0, 1) into pairwise disjoint measurable sets. We write \(\#\varvec{X},\#\varvec{S}\) for the number KL of classes, respectively. Then \(\mu \) is \(\varepsilon \)-regular with respect to \((\varvec{X},\varvec{S})\) if there exists \(R\subset [\#\varvec{X}]\times [\#\varvec{S}]\) such that the following conditions hold.

REG1::

\(\lambda (X_i)>0\) and \(\lambda (S_j)>0\) for all \((i,j)\in R\).

REG2::

\(\sum _{(i,j)\in R}\lambda (X_i)\lambda (S_j)>1-\varepsilon \).

REG3::

for all \((i,j)\in R\) and almost all \(s,s'\in S_j\) we have \(\Vert {\int _{X_i}\mu _{s,x}-\mu '_{s',x}{\mathrm d}x}\Vert _{\mathrm {TV}}<\varepsilon \lambda (X_i)\).

REG4::

if \((i,j)\in R\), then for every \(U\subset X_i\) with \(\lambda (U)\ge \varepsilon \lambda (X_i)\) and every \(T\subset S_j\) with \(\lambda (T)\ge \varepsilon \lambda (S_j)\) we have

$$\begin{aligned} \left\| {\mu _{S,X_i}-\mu _{T,U}}\right\| _{\mathrm {TV}}<\varepsilon . \end{aligned}$$

A refinement of a partition \((\varvec{X},\varvec{S})\) is a partition \((\varvec{X}',\varvec{S}')\) such that for every pair \((i',j')\in [\#\varvec{X}']\times [\varvec{S}']\) there is a pair \((i,j)\in [\#\varvec{X}]\times [\varvec{S}]\) such that \((X_{i'}',S_{j'}')\subset (X_i,S_j)\).

Theorem A.1

([24]). For any \(\varepsilon >0\) there exists \(N=N(\varepsilon ,\Omega )\) such that for every \(\mu \in \mathscr {K}\) the following is true. Every partition \((\varvec{X}_0,\varvec{S}_0)\) with \(\#\varvec{X}_0+\#\varvec{S}_0\le 1/\varepsilon \) has a refinement \((\varvec{X},\varvec{S})\) such that \(\#\varvec{X}+\#\varvec{S}\le N\) with respect to which \(\mu \) is \(\varepsilon \)-regular.

Additionally, we need the strong cut metric, defined by

$$\begin{aligned} D_{\Box }(\mu ,\nu )&=\sup _{S,X,\omega }\left| {\int _S\int _X\mu _{s,x}(\omega )-\nu _{s,x}(\omega ){\mathrm d}x{\mathrm d}s}\right| \qquad (\mu ,\nu \in \mathscr {K}), \end{aligned}$$

where SX range over measurable subsets of the unit interval and \(\omega \in \Omega \). It is well known that \(D_{\Box }(\,\cdot \,,\,\cdot \,)\) induces a metric on \(\mathscr {K}\).

For \(\mu ,\nu \in \mathscr {K}\) we define \(\mu \oplus \nu :[0,1]^3\rightarrow \mathscr {P}(\Omega ^2)\) by \(\mu \oplus \nu _{s,x_1,x_2}=\mu _{s,x_1}\otimes \mu _{s,x_2}\). Since \([0,1]^2\) with the Lebesgue measure is isomorphic as a measure space to [0, 1] with the Lebesgue measure, we can view \(\mu \oplus \nu \) as a strong \(\mathscr {P}(\Omega ^2)\)-valued kernel. In particular, it makes sense to apply the strong cut metric to these kernels.

Proposition A.2

The map \((\mu ,\nu )\mapsto \mu \oplus \nu \) is continuous with respect to the strong cut metric.

Proof

Given \(\varepsilon >0\) pick a small enough \(\delta >0\) and assume that \(D_{\Box }(\mu ,\mu ')<\delta \). Due to the triangle inequality it suffices to prove that \(D_{\Box }(\mu \oplus \nu ,\mu '\oplus \nu )<\varepsilon \) for every \(\nu \). Thus, we need to show that for any \(X\subset [0,1]^2\), \(S\subset [0,1]\) and \(\sigma ,\tau \in \Omega \),

$$\begin{aligned} \left| {\int _X\int _S\left( {\mu _{s,x_1}(\sigma )-\mu '_{s,x_1}(\sigma )}\right) \nu _{s,x_2}(\tau ){\mathrm d}s{\mathrm d}x_1{\mathrm d}x_2}\right| <\varepsilon . \end{aligned}$$
(A.1)

To this end, we may assume that \(\lambda (S)>\varepsilon ^2\) and that \(\int _S\nu _{s,x_2}(\tau ){\mathrm d}s>\varepsilon ^2\) for all \((x_1,x_2)\in X\). Further, with \(z=\int _0^1\nu _{s,x_2}(\tau ){\mathrm d}s\) consider the variable transformation

$$\begin{aligned} {\mathrm d}t=\frac{\nu _{s,x_2}(\tau ){\mathrm d}s}{z}. \end{aligned}$$
(A.2)

Let T be the inverse image of S under the transformation (A.2). Then we obtain for any \(X_1\subset [0,1]\),

$$\begin{aligned} \int _{X_1}\int _S\left( {\mu _{s,x_1}(\sigma )-\mu '_{s,x_1}(\sigma )}\right) \nu _{s,x_2}(\tau ){\mathrm d}s{\mathrm d}x_1&=z\int _{X_1}\int _T\mu _{t,x_1}(\sigma )-\mu '_{t,x_1}(\sigma ){\mathrm d}t{\mathrm d}x_1. \end{aligned}$$
(A.3)

But the assumption \(D_{\Box }(\mu ,\mu ')<\delta \) implies that the double integral on the r.h.s. of (A.3) is bounded by \(\varepsilon ^4\) in absolute value (providing \(\delta \) is small enough). Thus, (A.1) follows.

\(\square \)

Proof of Lemma 3.6

We may assume without loss that \(f(\tau )=\varvec{1}\{\tau =\sigma \}\) for some \(\sigma \in \Omega ^k\). Let \(\varepsilon >0\), pick \(\alpha =\alpha (\varepsilon )\), \(\xi =\xi (\alpha )>0\) small enough and assume that \(\mu ,\nu \in \mathscr {K}\) are such that \(D_{\Box }(\mu ,\nu )<\delta \) for a small enough \(\delta =\delta (\xi )>0\). Applying Theorem A.1 twice, we obtain \((\varvec{X},\varvec{S})\) with respect to which both \(\mu ,\nu \) are \(\xi \)-regular, and \(L=\#\varvec{X}+\#\varvec{S}\) is bounded in terms of \(\xi \) only. Let \(R'\) be the set of all pairs for which REG1–REG4 are satisfied for both \(\mu ,\nu \) and that satisfy \(\lambda (\varvec{X}_i,\varvec{S}_j)>\xi ^8/L\). Assuming that \(\delta \) is sufficiently small, we obtain

$$\begin{aligned} |\mu _{S_i,X_j}-\nu _{S_i,X_j}|<\xi ^8\qquad \text{ for } \text{ all } (i,j)\in R'\text{. } \end{aligned}$$
(A.4)

Furthermore, consider the random variables

$$\begin{aligned} z_i&=\prod _{h=1}^k\mu _{S_i,\varvec{x}_h}(\sigma _h),&z&=\sum _{i\le \#\varvec{S}}z_i,\\ z_i'&=\prod _{h=1}^k\nu _{S_i,\varvec{x}_h}(\sigma _h),&z'&=\sum _{i\le \#\varvec{S}}z_i' \end{aligned}$$

and define \(\mu ',\nu '\in \mathscr {K}\) as follows. To construct \(\mu '\), partition the interval [0, 1] into pairwise disjoint sets \(T_i\), \(i\in [\#\varvec{S}]\), of measure \(z_i/z\) and fill the strip \(T_i\times [0,1]\) with a suitably scaled copy of \((\mu _{s,x})_{s\in S_i,x\in [0,1]}\). Construct \(\nu '\) analogously from the \(z_i'\). Then \(\mathscr {D}_{\Box }(\mu ',f*\mu )=\mathscr {D}_{\Box }(\nu ',f*\nu )=0\). Furthermore, Proposition A.2 shows that with probability at least \(1-\alpha \) we have

$$\begin{aligned} \sum _{i=1}^{\#\varvec{S}}\lambda (S_i)|z_i-z_i'|<\alpha ^2, \end{aligned}$$

provided that \(\xi ,\delta \) are chosen small enough. Since also \(z\ge \alpha \) because the function f is strictly positive, we conclude that with probability at least \(1-\alpha \) we have \(\mathscr {D}_{\Box }(\mu ',\nu ')<\alpha \). We thus obtain a coupling of the random variables \(f*\mu ,f*\nu \) under which the expected cut distance is bounded by \(\varepsilon \), as desired. \(\quad \square \)

Proof of Lemma 7.12

We proceed precisely as in the proof of Lemma 3.6, up until the point where the positivity of f is used. In the setup of Lemma 7.12, the function f may take the value 0 on kernels that take the value 1 with positive probability; however, since we are assuming that the values of the kernels are bounded by \(\lambda /(1+\lambda )\). Therefore, the function f always attains values that are bounded away from 0. \(\quad \square \)

Appendix B. Proof of Lemma 3.3

The proof of Lemma 3.3 requires the following operation. For functions \(f:\Omega ^{M\times N}\rightarrow \mathbb {R}\), \(g:\Omega ^{L\times N}\rightarrow \mathbb {R}\) we define

$$\begin{aligned} f\otimes g&:\Omega ^{(M+L)\times N}\rightarrow \mathbb {R},&\sigma&\mapsto f\left( {(\sigma _{i,j})_{i\in [M],j\in [N]}}\right) \cdot g\left( {(\sigma _{i+M,j+N})_{i\in [L],j\in [N]}}\right) . \end{aligned}$$

Thus, the first M rows of \(\sigma \) go into f, the last L rows go into g and we multiply the results.

We define a corresponding operation on kernels. Namely, for \(\mu ,\nu \in \mathscr {K}\) we define \(\mu \otimes \nu :[0,1]^3\rightarrow \mathscr {P}(\Omega ^2)\) by \(\mu \oplus \nu _{s,t,x}=\mu _{s,x}\otimes \nu _{t,x}\). Since \(([0,1]^2,\lambda \otimes \lambda )\) is isomorphic \(([0,1],\lambda )\), we can view \(\mu \otimes \nu \) as a \(\mathscr {P}(\Omega ^2)\)-valued kernel, and the cut metric extends to these kernels. Since the cut metric is invariant under swapping the axes, Proposition A.2 readily yields the following.

Proposition B.1

The map \((\mu ,\nu )\mapsto \mu \otimes \nu \) is continuous with respect to the cut metric.

As a final preparation toward the proof of Lemma 3.3 we need the following fact.

Lemma B.2

For any \(f:\Omega \rightarrow \mathbb {R}\) the map \(\mu \in \mathfrak {K}\mapsto \mathbb {E}\left\langle {{f},{\mu }}\right\rangle \) is continuous.

Proof

We may assume without loss that \(f(\tau )=\varvec{1}\{\sigma =\tau \}\) for some \(\sigma \in \Omega \). Then

$$\begin{aligned} \mathbb {E}\left\langle {{f},{\mu }}\right\rangle =\int _0^1\int _0^1\mu _{s,x}(\sigma ){\mathrm d}x{\mathrm d}s, \end{aligned}$$

and it is immediate from the definition of the cut metric that the integral on the right hand side is a continuous function of \(\mu \). \(\quad \square \)

Proof of Lemma 3.3

Let \(f:\Omega ^{m\times n}\rightarrow \mathbb {R}\) and let \(\mu \in \mathfrak {K}\). Define \(\nu =(\mu ^{\oplus n})^{\otimes m}\). Then \(\nu \) is a kernel with values in \(\Omega ^{mn}\) and the definition of \(\left\langle {{\,\cdot \,},{\,\cdot \,}}\right\rangle \) ensures that \(\mathbb {E}\left\langle {{f},{\mu }}\right\rangle =\mathbb {E}\left\langle {{f},{\nu }}\right\rangle \). This already shows that the map \(\mu \mapsto \mathbb {E}\left\langle {{f},{\mu }}\right\rangle \) is continuous, because the map \(\mu \mapsto \nu \) is continuous by Proposition A.2 and B.1 and the map \(\nu \mapsto \mathbb {E}\left\langle {{f},{\nu }}\right\rangle \) is continuous by Lemma B.2. Now fix an integer \(\ell \ge 2\) and let \(\eta =\nu ^{\otimes \ell }\). Then

$$\begin{aligned} \mathbb {E}\left[{\left\langle {{f},{\mu }}\right\rangle ^\ell }\right]=\mathbb {E}\left[{\left\langle {{f},{\eta }}\right\rangle }\right] \end{aligned}$$

and thus the continuity of the map \(\mu \mapsto \mathbb {E}\left[{\left\langle {{f},{\mu }}\right\rangle ^\ell }\right]\) follows from Proposition B.1 and Lemma B.2. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coja-Oghlan, A., Perkins, W. Spin Systems on Bethe Lattices. Commun. Math. Phys. 372, 441–523 (2019). https://doi.org/10.1007/s00220-019-03544-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03544-y

Navigation