Skip to main content
Log in

Hodge-Elliptic Genera and How They Govern K3 Theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The (complex) Hodge-elliptic genus and its conformal field theoretic counterpart were recently introduced by Kachru and Tripathy, refining the traditional complex elliptic genus. We construct a different, so-called chiral Hodge-elliptic genus, which is expected to agree with the generic conformal field theoretic Hodge-elliptic genus, in contrast to the complex Hodge-elliptic genus as originally defined. For K3 surfaces X, the chiral Hodge-elliptic genus is shown to be independent of all moduli. Moreover, employing Kapustin’s results on infinite volume limits it is shown that it agrees with the generic conformal field theoretic Hodge-elliptic genus of K3 theories, while the complex Hodge-elliptic genus does not. This new invariant governs part of the field content of K3 theories, supporting the idea that all their spaces of states have a common subspace which underlies the generic conformal field theoretic Hodge-elliptic genus, and thereby the complex elliptic genus. Mathematically, this space is modelled by the sheaf cohomology of the chiral de Rham complex of X. It decomposes into irreducible representations of the \(N=4\) superconformal algebra such that the multiplicity spaces of all massive representations have precisely the dimensions required in order to furnish the representation of the Mathieu group \(M_{24}\) that is predicted by Mathieu Moonshine. This is interpreted as evidence in favour of the ideas of symmetry surfing, which have been proposed by Taormina and the author, along with the claim that the sheaf cohomology of the chiral de Rham complex is a natural home for Mathieu Moonshine. These investigations also imply that the generic chiral algebra of K3 theories is precisely the \(N=4\) superconformal algebra at central charge \(c=6\), if the usual predictions on infinite volume limits from string theory hold true.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ademollo, M., Brink, L., D’Adda, A., D’Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R., Pettorino, R.: Supersymmetric strings and color confinement. Phys. Lett. B 62, 105–110 (1976)

    Article  ADS  Google Scholar 

  2. Atiyah, M., Bott, R., Patodi, V.K.: On the heat equation and the index theorem. Invent. Math 19, 279–330 (1973). Errata: Invent. Math. 28, 277–280 (1975)

  3. Alvarez, O., Killingback, T.P., Mangano, M., Windey, P.: String theory and loop space index theorems. Commun. Math. Phys. 111, 1–12 (1987)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Aspinwall, P.S., Morrison, D.R.: String theory on K3 surfaces. In: Greene, B., Yau, S.T. (eds.) Mirror Symmetry II, pp. 703–716. AMS, Providence (1994). arXiv:hep-th/9404151

    Google Scholar 

  5. Aspinwall, P.S., Melnikov, I.V., Plesser, M.R.: (0, 2) Elephants. JHEP 01, 060 (2012). arXiv:1008.2156 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Ben-Zvi, D., Heluani, R., Szczesny, M.: Supersymmetry of the chiral de Rham complex. Compos. Math. 144(2), 503–521 (2008). arXiv:math/0601532 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  7. Borisov, L.A., Libgober, A.: Elliptic genera of toric varieties and applications to mirror symmetry. Invent. Math. 140(2), 453–485 (2000). arXiv:math/9904126 [math.AG]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Borisov, L.A., Libgober, A.: Elliptic genera of singular varieties. Duke Math. J. 116(2), 319–351 (2003). arXiv:math/0007108 [math.AG]

    Article  MathSciNet  MATH  Google Scholar 

  9. Borisov, L.A.: Vertex algebras and mirror symmetry. Commun. Math. Phys. 215(2), 517–557 (2001). arXiv:math/9809094 [math.AG]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Berglund, P., Parkes, L., Hubsch, T.: The complete matter sector in a three generation compactification. Commun. Math. Phys. 148, 57–100 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Candelas, P., de la Ossa, X.C., Green, P.S., Parkes, L.: A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359, 21–74 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Cecotti, S.: \({N}=2\) Landau–Ginzburg vs. Calabi–Yau \(\sigma \)-models: non-perturbative aspects. Int. J. Mod. Phys. A6, 1749–1813 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Casher, A., Englert, F., Nicolai, H., Taormina, A.: Consistent superstrings as solutions of the \(D=26\) bosonic string theory. Phys. Lett. B 162, 121–126 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  14. Creutzig, Th, Höhn, G.: Mathieu moonshine and the geometry of K3 surfaces. Commun. Number Theory Phys. 8(2), 295–328 (2014). arXiv:1309.2671 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng, M.C.N.: K3 surfaces, \(N=4\) dyons, and the Mathieu group \(M_{24}\). Commun. Number Theory Phys. 4, 623–657 (2010). arXiv:1005.5415 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  16. Candelas, P., Lynker, M., Schimmrigk, R.: Calabi–Yau manifolds in weighted P(4). Nucl. Phys. B341, 383–402 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Distler, J., Greene, B.: Some exact results on the superpotential from Calabi–Yau compactifications. Nucl. Phys. B 309, 295–316 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  18. Dixon, L.J., Harvey, J., Vafa, C., Witten, E.: Strings on orbifolds. Nucl. Phys. B 261, 678–686 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  19. Dixon, L.J., Harvey, J., Vafa, C., Witten, E.: Strings on orbifolds II. Nucl. Phys. B 274, 285–314 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  20. Dixon, L.J.: Some world-sheet properties of superstring compactifications, on orbifolds and otherwise. In: Superstrings, Unified Theories and Cosmology 1987 (Trieste, 1987). ICTP Series in Theoretical Physics, vol. 4, pp. 67–126. World Sci. Publ., Teaneck (1988)

  21. Di Francesco, P., Yankielowicz, S.: Ramond sector characters and \({N}=2\) Landau–Ginzburg models. Nucl. Phys. B 409, 186–210 (1993). arXiv:hep-th/9305037

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Eguchi, T., Hikami, K.: Superconformal algebras and mock theta functions 2. Rademacher expansion for K3 surface. Commun. Number Theory Phys. 3, 531–554 (2009). arXiv:0904.0911 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  23. Eguchi, T., Hikami, K.: Note on twisted elliptic genus of K3 surface. Phys. Lett. B 694, 446–455 (2011). arXiv:1008.4924 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  24. Eguchi, T., Ooguri, H., Tachikawa, Y.: Notes on the \(K3\) surface and the Mathieu group \(M_{24}\). Exp. Math. 20(1), 91–96 (2011). arXiv:1004.0956 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  25. Eguchi, T., Ooguri, H., Taormina, A., Yang, S.-K.: Superconformal algebras and string compactification on manifolds with \({SU}(n)\) holonomy. Nucl. Phys. B 315, 193–221 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  26. Eguchi, T., Taormina, A.: Unitary representations of the \({N}=4\) superconformal algebra. Phys. Lett. B 196, 75–81 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  27. Eguchi, T., Taormina, A.: Character formulas for the \({N}=4\) superconformal algebra. Phys. Lett. B 200, 315–322 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  28. Eguchi, T., Taormina, A.: Extended superconformal algebras and string compactifications, pp. 167–188. Trieste School, Superstrings (1988)

  29. Eguchi, T., Taormina, A.: On the unitary representations of \({N}=2\) and \({N}=4\) superconformal algebras. Phys. Lett. 210, 125–132 (1988)

    Article  MathSciNet  Google Scholar 

  30. Eguchi, T., Yang, S.-K.: N = 2 superconformal models as topological field theories. Mod. Phys. Lett. A 5, 1693–1701 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Frenkel, E., Szczesny, M.: Chiral de Rham complex and orbifolds. J. Algebr. Geom. 16(4), 599–624 (2007). arXiv:math/0307181 [math.AG]

    Article  MathSciNet  MATH  Google Scholar 

  32. Gannon, T.: Much ado about Mathieu. Adv. Math. 301, 322–358 (2016). arXiv:1211.5531 [math.RT]

    Article  MathSciNet  MATH  Google Scholar 

  33. Getzler, E.: Pseudodifferential operators on supermanifolds and the Atiyah–Singer index theorem. Commun. Math. Phys. 92(2), 163–178 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Gaberdiel, M.R., Hohenegger, S., Volpato, R.: Mathieu moonshine in the elliptic genus of K3. JHEP 1010, 062 (2010). arXiv:1008.3778 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Gaberdiel, M.R., Hohenegger, S., Volpato, R.: Mathieu twining characters for K3. JHEP 1009, 058 (2010). arXiv:1006.0221 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Gaberdiel, M.R., Hohenegger, S., Volpato, R.: Symmetries of K3 sigma models. Commun. Number Theory Phys. 6, 1–50 (2012). arXiv:1106.4315 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  37. Gilkey, P.B.: Curvature and the eigenvalues of the Dolbeault complex for Kaehler manifolds. Adv. Math. 11, 311–325 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gaberdiel, M.R., Keller, Ch., Paul, H.: Mathieu moonshine and symmetry surfing. J. Phys. A50(47), 474002 (2017). arXiv:1609.09302 [hep-th]

    MathSciNet  MATH  ADS  Google Scholar 

  39. Gorbounov, V., Malikov, F.: Vertex algebras and the Landau–Ginzburg/Calabi–Yau correspondence. Mosc. Math. J. 4(3), 729–779 (2004). arXiv:math.AG/0308114

    Article  MathSciNet  MATH  Google Scholar 

  40. Greene, B.R., Plesser, M.R.: Duality in Calabi–Yau moduli space. Nucl. Phys. B 338, 15–37 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  41. Greene, B.R.: String theory on Calabi–Yau manifolds. In: Fields, Strings and Duality (Boulder, CO, 1996), pp. 543–726. World Sci. Publishing, River Edge (1997). arXiv:hep-th/9702155

  42. Grimm, F.: The chiral de Rham complex of tori and orbifolds. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg (2016). Supervisor: K. Wendland. http://home.mathematik.uni-freiburg.de/mathphys/mitarbeiter/wendland/GrimmPhD.pdf

  43. Haefliger, A.: Orbi-espaces. In: Ghys, Etienne, de la Harpe, Pierre (eds.) Sur les groupes hyperboliques d’après Mikhael Gromov, pp. 203–213. Birkhäuser, Boston (1990)

    Chapter  Google Scholar 

  44. Heluani, R.: Supersymmetry of the chiral de Rham complex. II. Commuting sectors. Int. Math. Res. Not. 6, 953–987 (2009). arXiv:0806.1021 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  45. Hirzebruch, F.: Elliptic genera of level \(N\) for complex manifolds. In: Bleuler, K., Werner, M. (eds.) Differential Geometric Methods in Theoretical Physics, pp. 37–63. Kluwer Acad. Publ., Dordrecht (1988)

    Chapter  Google Scholar 

  46. Huybrechts, D.: The tangent bundle of a Calabi–Yau manifold. Deformations and restriction to rational curves. Commun. Math. Phys. 171(1), 139–158 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. Kapustin, A.: Chiral de Rham complex and the half-twisted sigma-model. arXiv:hep-th/0504074

  48. Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2, pp. 120–139. Birkhäuser, Basel (1994). arXiv:alg-geom/9411018

  49. Krichever, I.: Generalized elliptic genera and Baker–Akhiezer functions. Math. Notes 47, 132–142 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kachru, S., Tripathy, A.: The Hodge-elliptic genus, spinning BPS states, and black holes. Commun. Math. Phys. 355, 245–259 (2017). arXiv:1609.02158 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. Kachru, S., Tripathy, A.: BPS jumping loci and special cycles. arXiv:1703.00455 [hep-th]

  52. Lian, B.H., Linshaw, A.R.: Chiral equivariant cohomology. I. Adv. Math. 209(1), 99–161 (2007). arXiv:math/0501084 [math.DG]

    Article  MathSciNet  MATH  Google Scholar 

  53. Lerche, W., Vafa, C., Warner, N.P.: Chiral rings in \({N}=2\) superconformal theories. Nucl. Phys. B 324, 427–474 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  54. Mordell, L.J.: The definite integral \(\int _{-\infty }^\infty {e^{ax^2+b}\over e^{cx}+d}dx\) and analytic theory of numbers. Acta Math. 61, 323–360 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  55. Malikov, F., Schechtman, V.: Chiral Poincaré duality. Math. Res. Lett. 6(5–6), 533–546 (1999). arXiv:math/9905008 [math.AG]

    Article  MathSciNet  MATH  Google Scholar 

  56. Malikov, F., Schechtman, V., Vaintrob, A.: Chiral de Rham complex. Commun. Math. Phys. 204(2), 439–473 (1999). arXiv:math/9803041 [math.AG]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  57. Mukai, S.: Finite groups of automorphisms of K3 surfaces and the Mathieu group. Invent. Math. 94, 183–221 (1988)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. Narain, K.S.: New heterotic string theories in uncompactified dimensions \(<10\). Phys. Lett. 169B, 41–46 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  59. Nahm, W., Wendland, K.: A hiker’s guide to K3—aspects of \({N}=(4,4)\) superconformal field theory with central charge \(c=6\). Commun. Math. Phys. 216, 85–138 (2001). arXiv:hep-th/9912067

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. Ooguri, H.: Superconformal symmetry and geometry of Ricci flat Kahler manifolds. Int. J. Mod. Phys. A 4, 4303–4324 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  61. Patodi, V.K.: An analytic proof of Riemann–Roch–Hirzebruch theorem for Kaehler manifolds. J. Differ. Geom. 5, 251–283 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  62. Seiberg, N.: Observations on the moduli space of superconformal field theories. Nucl. Phys. B 303, 286–304 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  63. Sen, A.: \((2,0)\) supersymmetry and space–time supersymmetry in the heterotic string theory. Nucl. Phys. B 278, 289–308 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  64. Sen, A.: Heterotic string theory on Calabi–Yau manifolds in the Green–Schwarz formalism. Nucl. Phys. B 284, 423–448 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  65. Song, B.: Vector bundles induced from jet schemes. arXiv:1609.03688 [math.DG]

  66. Song, B.: Chiral Hodge cohomology and Mathieu moonshine. arXiv:1705.04060 [math.QA]

  67. Taormina, A.: The \({N}=2\) and \({N}=4\) superconformal algebras and string compactifications. Mathematical Physics, Islamabad, pp. 349–370. World Sci. Publishing (1989)

  68. Thurston, W.P.: Three-Dimensional Geometry and Topology, vol. 1, Princeton University Press, Princeton, ed. Silvio Levy (1997)

  69. Taormina, A., Wendland, K.: The overarching finite symmetry group of Kummer surfaces in the Mathieu group \(M_{24}\). JHEP 08, 125 (2013). arXiv:1107.3834 [hep-th]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  70. Taormina, A., Wendland, K.: Symmetry-surfing the moduli space of Kummer K3s. In: Proceedings of the Conference String-Math 2012, Proceedings of Symposia in Pure Mathematics, no. 90, pp. 129–153. arXiv:1303.2931 [hep-th]

  71. Taormina, A., Wendland, K.: A twist in the \(M_{24}\) moonshine story. Confluentes Mathematici 7, 83–113 (2015). arXiv:1303.3221 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  72. Taormina, A., Wendland, K.: The Conway moonshine module is a reflected K3 theory. arXiv:1704.03813 [hep-th]

  73. Wendland, K.: Moduli spaces of unitary conformal field theories. Ph.D. thesis, University of Bonn (2000). Supervisor: W. Nahm; available on request

  74. Wendland, K.: Snapshots of conformal field theory. In: Calaque, D., Strobl, Th (eds.) Mathematical Aspects of Quantum Field Theories, pp. 89–129. Springer, Berlin (2015). arXiv:1404.3108 [hep-th]

    MATH  Google Scholar 

  75. Wendland, K.: K3 en route from geometry to conformal field theory. In: Proceedings of the 2013 Summer School “Geometric, Algebraic and Topological Methods for Quantum Field Theory” in Villa de Leyva, Colombia, pp. 75–110. World Scientific. arXiv:1503.08426 [math.DG]

  76. Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys. B 202, 253–316 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  77. Witten, E.: Elliptic genera and quantum field theory. Commun. Math. Phys. 109, 525–536 (1987)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  78. Witten, E.: The index of the Dirac operator in loop space. In: Landweber, P. (ed.) Elliptic Curves and Modular Forms in Algebraic Geometry, pp. 161–181. Springer, Berlin (1988)

    Chapter  Google Scholar 

  79. Witten, E.: Mirror manifolds and topological field theory. In: Essays on Mirror Manifolds, pp. 120–158. Internat. Press, Hong Kong (1992). arXiv:hep-th/9112056

  80. Witten, E.: On the Landau–Ginzburg description of \({N}=2\) minimal models. Int. J. Mod. Phys. A 9, 4783–4800 (1994). arXiv:hep-th/9304026

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

It is my great pleasure to thank Thomas Creutzig, Shamit Kachru, Stefan Kebekus, Anatoly Libgober, Emanuel Scheidegger, and Anne Taormina for very helpful communications and discussions. I particularly thank Bailin Song for his comments on an earlier version of this note, which lead to the formulation of Prop. 4.4 and to a considerable extension of the interpretation of my calculations. I am grateful to an anonymous referee for their diligent reading of the manuscript and constructive criticism. I am also grateful to the organisers of the program on Automorphic forms, mock modular forms and string theory in September 2016 and to the Simons Center for Geometry and Physics at Stony Brook for the support and hospitality, and for the inspiring environment during the initial steps of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Wendland.

Additional information

Communicated by N. Nekrasov

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendland, K. Hodge-Elliptic Genera and How They Govern K3 Theories. Commun. Math. Phys. 368, 187–221 (2019). https://doi.org/10.1007/s00220-019-03425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03425-4

Navigation