Skip to main content
Log in

Real Holomorphic Sections of the Deligne–Hitchin Twistor Space

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the holomorphic sections of the Deligne–Hitchin moduli space of a compact Riemann surface, especially the sections that are invariant under the natural anti-holomorphic involutions of the moduli space. Their relationships with the harmonic maps are established. As a by product, a question of Simpson on such sections, posed in [Si4], is answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky D., Cortés V.: The twistor spaces of a para-quaternionic Kähler manifold. Osaka J. Math. 45, 215–251 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Baraglia D.: Classification of the automorphism and isometry groups of Higgs bundle moduli spaces. Proc. Lond. Math. Soc. 112, 827–854 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baraglia, D., Biswas, I., Schaposnik, L.P.: Automorphisms of \({{{\mathbb{C} }}^*}\) moduli spaces associated to a Riemann surface, Symm. Integr. Geom. Meth. Appl. 12, Paper No. 007 (2016)

  4. Bielawski, R., Romão, N., Röser, M.: The Nahm-Schmid equations and hypersymplectic geometry. Q. J. Math. http://dx.doi.org/10.1093/qmath/hay023 (to appear)

  5. Biswas I., Gómez T.L., Hoffmann N., Logares M.: Torelli theorem for the Deligne–Hitchin moduli space. Comm. Math. Phys. 290, 357–369 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Biswas, I., Heller, S.: On the automorphisms of a rank one Deligne–Hitchin moduli space. SIGMA Symmetry, Integrability and Geometry: Methods and Applications, vol. 13, Paper No. 072 (2017)

  7. Bungart L.: On analytic fiber bundles. I. Holomorphic fiber bundles with infinite dimensional fibers. Topology 7, 55–68 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corlette K.: Flat bundles with canonical metrics. J. Differ. Geom. 28, 361–382 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dancer, A., Swann, A.: Hypersymplectic manifolds. In: D.V. Alekseevsky et al. (eds) Recent Developments in Pseudo-Riemannian Geometry. ESI Lectures in Mathematics and Physics, pp. 97–148. European Mathematical Society, Zürich (2008)

  10. Donagi, R., Pantev, T.: Geometric Langlands and Non-Abelian Hodge Theory. Surveys in differential geometry, vol. XIII. Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry, pp. 85–116, International Press, Somerville, MA (2009)

  11. Donaldson S.K.: Twisted harmonic maps and the self-duality equations. Proc. Lond. Math. Soc. 55, 127–131 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heller, L., Heller, S., Schmitt, N.: Navigating the space of symmetric CMC surfaces, to appear in J. Differ. Geom. arXiv:1501.01929

  13. Heller, L., Heller, S.: Higher solutions of Hitchin’s self-duality equations. arXiv:1801.02402

  14. Heller S.: Higher genus minimal surfaces in S 3 and stable bundles. J. Reine Angew. Math. 685, 105–122 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Heller S.: A spectral curve approach to Lawson symmetric CMC surfaces of genus 2. Math. Ann. 360, 607–652 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hertling, C., Sevenheck, Ch.: Twistor structures, tt*-geometry and singularity theory, “From tQFT to tt* and integrability”. In: Proceedings of Symposia in Pure Mathematics, vol. 78, pp. 49–73, American Mathematical Society, Providence, RI (2008)

  17. Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–126 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hitchin N.J.: Harmonic maps from a 2-torus to the 3-sphere. J. Differ. Geom. 31, 627–710 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hitchin N.J.: Stable bundles and integrable systems. Duke Math. J. 54, 91–114 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hitchin N.J.: Hypersymplectic quotients. Acta Acad. Sci. Tauriensis 124, 169–180 (1990)

    Google Scholar 

  21. Hitchin N.J., Karlhede A., Lindström U., Rocek M.: Hyperkähler metrics and supersymmetry. Commun. Math. Phys. 108, 535–589 (1987)

    Article  ADS  MATH  Google Scholar 

  22. Ivanov S., Zamkovoy S.: Para-Hermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23, 205–234 (2005)

    Article  MATH  Google Scholar 

  23. Kobayashi, S., Nomizu, K.: Foundations of differential geometry. In: Interscience Tracts in Pure and Applied Mathematics, No. 15 vol. II Interscience. Wiley, New York (1969)

  24. Kodaira K.: A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds. Ann. Math. 84, 146–162 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  25. Laumon G.: Un analogue global du cône nilpotent. Duke Math. J. 57, 647–671 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lawson H.B.: Complete minimal surfaces in S 3. Ann. Math. 92, 335–374 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. Narasimhan M.S., Ramanan S.: Moduli of vector bundles on a compact Riemann surface. Ann. Math. 89, 14–51 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pressley, A., Segal, G.: Loop Groups, Oxford Mathematical Monographs. Oxford University Press, New York (1986)

  29. Röser M.: Harmonic maps and hypersymplectic geometry. J. Geom. Phys. 78, 111–126 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Schäfer L.: tt *-geometry and pluriharmonic maps. Ann. Global Anal. Geom. 28, 285–300 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Simpson C.T.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Am. Math. Soc. 1, 867–918 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Simpson, C.T.: The Hodge filtration on nonabelian cohomology. Algebraic geometry—Santa Cruz 1995. In: Proceedings of Symposia in Pure Mathematics, vol. 62, Part 2, pp. 217–281. American Mathematical Society, Providence, RI (1997)

  33. Simpson, C.T.: Mixed twistor structures. https://arxiv.org/pdf/alg-geom/9705006.pdf

  34. Simpson, C.T.: A weight two phenomenon for the moduli of rank one local systems on open varieties. From Hodge theory to integrability and TQFT tt *-geometry. In: Proceedings of Symposia in Pure Mathematics, vol. 78, pp. 175–214. American Mathematical Society, Providence, RI (2008)

Download references

Acknowledgements

We are very grateful to the two referees for their very helpful comments to improve the manuscript. The first author is supported by a J. C. Bose Fellowship. The second author is supported by RTG 1670 “Mathematics inspired by string theory and quantum field theory” funded by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Biswas.

Additional information

Communicated by N. Nekrasov

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, I., Heller, S. & Röser, M. Real Holomorphic Sections of the Deligne–Hitchin Twistor Space. Commun. Math. Phys. 366, 1099–1133 (2019). https://doi.org/10.1007/s00220-019-03340-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03340-8

Navigation