Skip to main content
Log in

The Kernel of the Rarita–Schwinger Operator on Riemannian Spin Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the Rarita–Schwinger operator on compact Riemannian spin manifolds. In particular, we find examples of compact Einstein manifolds with positive scalar curvature where the Rarita–Schwinger operator has a non-trivial kernel. For positive quaternion Kähler manifolds and symmetric spaces with spin structure we give a complete classification of manifolds admitting Rarita–Schwinger fields. In the case of Calabi–Yau, hyperkähler, G2 and Spin(7) manifolds we find an identification of the kernel of the Rarita–Schwinger operator with certain spaces of harmonic forms. We also give a classification of compact irreducible spin manifolds admitting parallel Rarita–Schwinger fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez-Gaume L., Witten E.: Gravitational anomalies. Nucl. Phys. B 234(2), 269–330 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  2. Atiyah M.F., Singer I.M.: The index of elliptic operators. III. Ann. Math. (2) 87, 546–604 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Branson T., Hijazi O.: Bochner–Weitzenböck formulas associated with the Rarita–Schwinger operator. Int. J. Math. 13(2), 137–182 (2002)

    Article  MATH  Google Scholar 

  4. Brooks R.: The \({\hat{A}}\)-genus of complex hypersurfaces and complete intersections. Proc. Am. Math. Soc. 87(3), 528–532 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Bures J., Sommen F., Soucek V., Van Lancker P.: Rarita–Schwinger type operators in Clifford analysis. J. Funct. Anal. 185(2), 425–455 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bures J., Sommen F., Soucek V., Van Lancker P.: Symmetric analogues of Rarita–Schwinger equations. Ann. Glob. Anal. Geom. 21(3), 215–240 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cahen M., Gutt S.: Spin structures on compact simply connected Riemannian symmetric spaces. Simon Stevin 62, 209–242 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Conti D., Madsen T.B.: Harmonic structures and intrinsic torsion. Transform. Gr. 20(3), 699–723 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conti, D., Madsen, T.B., Salamon, S.: Quaternionic geometry in dimension eight. In: Andersen, J.E., Dancer, A., Garcia-Prada, G. (eds.) A Festschrift in Honor of Nigel Hitchin. Geometry and Physis, Vol. I. Oxford University Press, UK (2016)

  10. Degeratu, A., Wendland, K.: Friendly giant meets pointlike instantons? On a new conjecture by John McKay. In: Moonshine: The First Quarter Century and Beyond. London Mathematical Society. Lecture Note Series, vol. 372, pp. 55–127. Cambridge University Press, Cambridge (2010)

  11. Dessai A.: Spin c-manifolds with Pin(2)-action. Math. Ann. 315(4), 511–528 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dessai A.: Obstructions to positive curvature and symmetry. Adv. Math. 210(2), 560–577 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gadea, P.M., Gonzalez-Davila, J.C., Oubina, J.A.: Homogeneous spin Riemannian manifolds with the simplest Dirac operator. Adv. Geom. 18(3), 289–302 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hirzebruch, F.: Mannigfaltigkeiten und Modulformen, Jahresberichte der DMV (1990)

  15. Hirzebruch F.: Topological Methods in Algebraic Geometry, Die Grundlehren der Mathematischen Wissenschaften, vol. 131. Springer, New York (1966)

    Google Scholar 

  16. Hirzebruch F., Slodowy P.: Elliptic genera, involutions, and homogeneous spin manifolds. Geom. Dedicata 35(1–3), 309–343 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Hirzebruch, F., Berger, T., Jung, R.: Manifolds and Modular Forms, With Appendices by Nils–Peter Skoruppa and by Paul Baum. Aspects of Mathematics, vol. 20. Friedr. Vieweg & Sohn, Braunschweig (1992)

  18. Hitchin, N.: Stable forms and special metrics. In: Global Differential Geometry: The Mathematical Legacy of Alfred Gray (Bilbao, 2000). Contemporary Mathematics, vol. 288, pp. 70–89. American Mathematical Society, Providence (2001)

  19. Homma Y.: Estimating the eigenvalues on quaternionic Kähler manifolds. Int. J. Math. 17(6), 665–691 (2006)

    Article  MATH  Google Scholar 

  20. Homma Y.: Twisted Dirac operators and generalized gradients. Ann. Global Anal. 50(2), 101–127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Joyce D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)

    Google Scholar 

  22. Julia B.: Systeme lineaire associe aux equations d’Einstein. C. R. Acad. Sci. Paris Ser. II Mec. Phys. Chim. Sci. Univers Sci. Terre 295(2), 113–116 (1982)

    MathSciNet  MATH  Google Scholar 

  23. Kim E.C.: The \({\hat{A}}\)-genus and symmetry of the Dirac spectrum on Riemannian product manifolds. Differ. Geom. Appl. 25(3), 309–321 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lawson H.B., Michelsohn M.-L.: Spin Geometry, Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)

    Google Scholar 

  25. Mason L.J., Nicolas J.P.: Global results for the Rarita–Schwinger equations and Einstein vacuum equations. Proc. Lond. Math. Soc. (3) 79(3), 694–720 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moroianu A., Semmelmann U.: The Hermitian Laplace operator on nearly Kähler manifolds. Commun. Math. Phys. 294, 251–272 (2010)

    Article  ADS  MATH  Google Scholar 

  27. Nadel A.M.: Multiplier ideal sheaves and existence of Kähler–Einstein metrics of positive scalar curvature. Proc. Nat. Acad. Sci. U.S.A. 86(19), 7299–7300 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Ochanine, S.: Signature modulo 16, invariants de Kervaire generalises et nombres caracteristiques dans la K-theorie reelle. Memoirs of the Mathematical Society of France (N.S.), no. 5 (1980/1981)

  29. Penrose, R.: Twistors as spin 3/2 charges. In: Gravitation and Modern Cosmology, pp. 129–137 (Erice, 1990)

  30. Poon Y.S., Salamon S.M.: Quaternionic Kähler 8-manifolds with positive scalar curvature. J. Diff. Geom. 33(2), 363–378 (1991)

    Article  MATH  Google Scholar 

  31. Rarita W., Schwinger J.: On a theory of particles with half-integral spin. Phys. Rev. (2) 60, 61 (1941)

    Article  ADS  MATH  Google Scholar 

  32. Salamon S.M.: Quaternionic Kähler manifolds. Invent. Math. 67, 143–171 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Salamon, S.: Almost parallel structures. In: Global Differential Geometry: The Mathematical Legacy of Alfred Gray (Bilbao, 2000). Contemporary Mathematics, vol. 288, pp. 162–181. American Mathematical Society, Providence (2001)

  34. Semmelmann U., Weingart G.: Vanishing theorems for quaternionic Kähler manifolds. J. Reine Angew. Math. 544, 111–132 (2002)

    MathSciNet  MATH  Google Scholar 

  35. Semmelmann, U., Weingart, G.: The Standard Laplace Operator. Manuscripta Math. 158(1–2), 273–293 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Semmelmann, U.: Kählersche Killingspinoren und komplexe Kontaktstrukturen, Ph.D. thesis, Humboldt Universität zu Berlin (1995)

  37. Strese H.: Über den Dirac-Operator auf Grassmann–Mannigfaltigkeiten. Math. Nachr. 98, 53–59 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Swann A.: Hyper-Kähler and quaternionic Kähler geometry. Math. Ann. 289(3), 421–450 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tian G.: On Kähler–Einstein metrics on certain Kähler manifolds with C 1(M) >  0. Invent. Math. 89(2), 225–246 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Wang M.Y.: Parallel spinors and parallel forms. Ann. Glob. Anal. Geom. 7(1), 59–68 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang M.Y.: Preserving parallel spinors under metric deformations. Indiana Univ. Math. J. 40(3), 815–844 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Witt F.: Special metrics and triality. Adv. Math. 219(6), 1972–2005 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Witten, E.: Fermion quantum numbers in Kaluza–Klein theory, Shelter Island II (Shelter Island, N.Y., 1983), pp. 227–277. MIT Press, Cambridge (1985)

  44. Witten E.: Global gravitational anomalies. Commun. Math. Phys. 100(2), 197–229 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Witten E.: Elliptic genera and quantum field theory. Commun. Math. Phys. 109(4), 525–536 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Anand Dessai for several helpful comments and for his interest in our work. We also thank the anonymous referee for helpful suggestions. The first author was partially supported by JSPS KAKENHI Grant Number JP15K04858. Both authors were partially supported by the DAAD-Waseda University Partnership Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Semmelmann.

Additional information

Communicated by P. Chrusciel

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homma, Y., Semmelmann, U. The Kernel of the Rarita–Schwinger Operator on Riemannian Spin Manifolds. Commun. Math. Phys. 370, 853–871 (2019). https://doi.org/10.1007/s00220-019-03324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03324-8

Navigation