Skip to main content
Log in

Higher Genus Modular Graph Functions, String Invariants, and their Exact Asymptotics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The concept and the construction of modular graph functions are generalized from genus-one to higher genus surfaces. The integrand of the four-graviton superstring amplitude at genus-two provides a generating function for a special class of such functions. A general method is developed for analyzing the behavior of modular graph functions under non-separating degenerations in terms of a natural real parameter t. For arbitrary genus, the Arakelov–Green function and the Kawazumi–Zhang invariant degenerate to a Laurent polynomial in t of degree (1, 1) in the limit \({t\to\infty}\) . For genus two, each coefficient of the low energy expansion of the string amplitude degenerates to a Laurent polynomial of degree (w, w) in t, where w + 2 is the degree of homogeneity in the kinematic invariants. These results are exact to all orders in t, up to exponentially suppressed corrections. The non-separating degeneration of a general class of modular graph functions at arbitrary genus is sketched and similarly results in a Laurent polynomial in t of bounded degree. The coefficients in the Laurent polynomial are generalized modular graph functions for a punctured Riemann surface of lower genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green M.B., Russo J.G., Vanhove P.: Low energy expansion of the four-particle genus-one amplitude in type II superstring theory. JHEP 0802, 020 (2008) arXiv:0801.0322 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  2. D’Hoker E., Green M.B., Vanhove P., Vanhove P.: Modular graph functions. Commun. Number Theor. Phys. 11, 165–218 (2017) arXiv:1512.06779 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  3. D’Hoker E., Green M.B., Vanhove P.: On the modular structure of the genus-one Type II superstring low energy expansion. JHEP 08, 041 (2015) arXiv:1502.06698 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  4. D’Hoker, E., Green, M.B., Vanhove, P.: Proof of a modular relation between 1-, 2- and 3-loop Feynman diagrams on a torus. J. Number Theory (2017). https://doi.org/10.1016/j.jnt.2017.07.022

  5. D’Hoker, E., Green, M.B.: Identities between modular graph forms. J. Number Theory 189, 25–80 (2018). https://doi.org/10.1016/j.jnt.2017.11.015

  6. D’Hoker E., Kaidi J.: Hierarchy of modular graph identities. JHEP 11, 051 (2016) arXiv:1608.04393 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  7. D’Hoker, E., Duke, W.: Fourier series of modular graph functions. J. Number Theory 192, 1–36 (2018). https://doi.org/10.1016/j.jnt.2018.04.012

  8. Green M.B., Schwarz J.H.: Supersymmetrical string theories. Phys. Lett. B 109, 444–448 (1982)

    Article  ADS  Google Scholar 

  9. Green M.B., Vanhove P.: The low energy expansion of the one-loop type II superstring amplitude. Phys. Rev. D 61, 104011 (2000) arXiv:hep-th/9910056

    Article  ADS  MathSciNet  Google Scholar 

  10. D’Hoker E., Phong D.: Lectures on two loop superstrings. Conf. Proc. C 0208124, 85–123 (2002) arXiv:hep-th/0211111 [hep-th]

    MATH  Google Scholar 

  11. D’Hoker E., Phong D.H.: Two-loop superstrings VI: non-renormalization theorems and the 4-point function. Nucl. Phys. B 715, 3–90 (2005) arXiv:hep-th/0501197 [hep-th]

    Article  ADS  MATH  Google Scholar 

  12. D’Hoker E., Gutperle M., Phong D.H.: Two-loop superstrings and S-duality. Nucl. Phys. B 722, 81–118 (2005) arXiv:hep-th/0503180

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Berkovits N.: Super-Poincare covariant two-loop superstring amplitudes. JHEP 01, 005 (2006) arXiv:hep-th/0503197 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  14. Berkovits N., Mafra C.R.: Equivalence of two-loop superstring amplitudes in the pure spinor and RNS formalisms. Phys. Rev. Lett. 96, 011602 (2006) arXiv:hep-th/0509234 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  15. D’Hoker E., Green M.B.: Zhang–Kawazumi invariants and superstring amplitudes. J. Number Theory 144, 111–150 (2014) arXiv:1308.4597

    Article  MathSciNet  MATH  Google Scholar 

  16. Kawazumi, N.: Johnson’s homomorphisms and the Arakelov–Green function. arXiv:0801.4218 [math.GT]

  17. Zhang S.-W.: Gross–Schoen cycles and dualising sheaves. Invent. Math. 179(1), 1–73 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. de Jong R.: Second variation of Zhang’s \({\lambda }\) -invariant on the moduli space of curves. Am. J. Math. 135(1), 275–290 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. D’Hoker E., Green M.B., Pioline B., Russo R.: Matching the \({D^{6} \mathcal{R}^{4}}\) interaction at two-loops. JHEP 01, 031 (2015) arXiv:1405.6226 [hep-th]

    Article  Google Scholar 

  20. Pioline B.: A Theta lift representation for the Kawazumi–Zhang and Faltings invariants of genus-two Riemann surfaces. J. Number Theory 163, 520–541 (2016) arXiv:1504.04182 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  21. D’Hoker E., Phong D.: The geometry of string perturbation theory. Rev. Mod. Phys. 60, 917 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kawazumi, N.: Some tensor field on the Teichmüller space. In: Lecture at MCM2016, OIST (2016). http://www.ms.u-tokyo.ac.jp/~kawazumi/OIST1610_v1.pdf

  23. Kawazumi, N.: Differential forms and functions on the moduli space of Riemann surfaces. In: Séminaire Algèbre et topologie, Université de Strasbourg (2017). http://www.ms.u-tokyo.ac.jp/~kawazumi/1701Strasbourg_v1.pdf

  24. Fay, J.D.: Theta functions on riemann surfaces. Lecture Notes in Mathematics, vol. 352, Springer (1973)

  25. Giddings S.B., Wolpert S.A.: A triangulation of moduli space from light cone string theory. Commun. Math. Phys. 109, 177 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. D’Hoker E., Giddings S.B.: Unitary of the closed bosonic Polyakov string. Nucl. Phys. B 291, 90 (1987)

    Article  ADS  Google Scholar 

  27. D’Hoker E., Phong D.H.: The box graph in superstring theory. Nucl. Phys. B 440, 24 (1995) arXiv:hep-th/9410152

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Wentworth, R.: The asymptotics of the Arakelov-Green’s function and Faltings’ delta invariant. Commun. Math. Phys. 137(3), 427–459 (1991). http://projecteuclid.org/euclid.cmp/1104202735

  29. de Jong R.: Asymptotic behavior of the Kawazumi–Zhang invariant for degenerating Riemann surfaces. Asian J. Math. 18(3), 507–524 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. D’Hoker, E., Green, M.B., Pioline, B.: Asymptotics of the \({D^8 \mathcal{R}^4}\) genus-two string invariant. arXiv:1806.02691 [hep-th]

  31. Rudra, A.: Field theory limit of the genus-two Type II superstring amplitude. Gong Show Talk, Strings 2015, ICTS Bangalore, India (unpublished)

  32. Siegel C.L.: Topics in Complex Function Theory, Vols. I, II, III. Wiley, Hoboken (1971)

    Google Scholar 

  33. Farkas H.M., Kra I.: Riemann Surfaces, vol. 71. Springer, New York (1980)

    Book  MATH  Google Scholar 

  34. Mumford, D.: Tata lectures on theta. I, vol. 28 of Progress in Mathematics. Birkhäuser Boston Inc., Boston. With the assistance of C. Musili, M. Nori, E. Previato and M. Stillman (1983)

  35. Klingen H.: Introductory Lectures on Siegel Modular Forms. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  36. Alvarez-Gaume L., Bost J., Moore G.W., Nelson P.C., Vafa C.: Bosonization on higher genus Riemann surfaces. Commun. Math. Phys. 112, 503 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Bost, J.-B., Mestre, J.-F., Moret-Bailly, L.: Sur le calcul explicite des “classes de Chern” des surfaces arithmétiques de genre 2. Astérisque, no. 183, pp. 69–105 (1990). Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988)

  38. Basu A.: Poisson equation for the Mercedes diagram in string theory at genus one. Class. Quant. Gravity 33(5), 055005 (2016) arXiv:1511.07455 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Basu A.: Proving relations between modular graph functions. Class. Quant. Grav. Class. Quant. Gravity 33(23), 235011 (2016) arXiv:1606.07084 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Brown F.: A class of non-holomorphic modular forms I. Res. Math. Sci. 5, 7 (2018) arXiv:1707.01230 [math.NT]

    Article  MathSciNet  Google Scholar 

  41. Brown, F.: A class of non-holomorphic modular forms II : equivariant iterated Eisenstein integrals. arXiv:1708.03354 [math.NT]

  42. Kleinschmidt A., Verschinin V.: Tetrahedral modular graph functions. JHEP 09, 155 (2017) arXiv:1706.01889 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Eichler M., Zagier D.: The Theory of Jacobi forms, Volume 55 of Progress in Mathematics. Birkhäuser Boston Inc., Boston (1985)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Pioline.

Additional information

Communicated by N. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Hoker, E., Green, M.B. & Pioline, B. Higher Genus Modular Graph Functions, String Invariants, and their Exact Asymptotics. Commun. Math. Phys. 366, 927–979 (2019). https://doi.org/10.1007/s00220-018-3244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3244-3

Navigation