Skip to main content
Log in

BPS Jumping Loci are Automorphic

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that BPS jumping loci–loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla–Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kachru, S., Tripathy, A.: BPS Jumping Loci and Special Cycles. arXiv:1703.00455 [hep-th]

  2. Kachru S., Tripathy A.: The Hodge-elliptic genus, spinning BPS states, and black holes. Commun. Math. Phys. 355(1), 245–259 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Wendland, K.: Hodge-Elliptic Genera and How They Govern K3 Theories. arXiv:1705.09904 [hep-th]

  4. Hirzebruch F., Zagier D.B.: Intersection numbers of curves on hilbert modular surfaces and modular forms of Nebentypus. Invent. Math. 36, 57 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Oda T.: On modular forms associated with indefinite quadratic forms of signature (2,n-2). Math. Ann. 231, 255 (1978)

    MathSciNet  Google Scholar 

  6. Kudla S., Millson J.: Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables. IHES Pub. Math. 71, 121 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kudla, S.: Special ycles and derivatives of Eisenstein series. In: Proceedings of the MSRI Workshop on Special Values of Rankin L-series. arXiv:math.NT/0308295

  8. Kudla, S.: A Note About Special Cycles on Moduli Spaces of K3 Surfaces. arXiv:1408.1907

  9. Moore, G.W.: Arithmetic and Attractors. arXiv:hep-th/9807087

  10. Moore, G.W.: Strings and Arithmetic. arXiv:hep-th/0401049

  11. Kachru S., Tripathy A.: Black holes and Hurwitz class numbers. Int. J. Mod. phys. D 24, 1742003 (2007) arXiv:1705.06295

    MathSciNet  Google Scholar 

  12. Tripathy P.K., Trivedi S.P.: Compactification with flux on K3 and tori. JHEP 0303, 028 (2003). https://doi.org/10.1088/1126-6708/2003/03/028. arXiv:hep-th/0301139

    Article  ADS  MathSciNet  Google Scholar 

  13. Van Der Geer G.: Hilbert Modular Surfaces. Springer, Berlin (2012)

    MATH  Google Scholar 

  14. Funke, J.: June 2017, Private Communications.

  15. Ferrara S., Kallosh R., Strominger A.: N = 2 extremal black holes. Phys. Rev. D 52, R5412 (1995). http://doi.org/10.1103/PhysRevD.52.R5412. arXiv:hep-th/9508072

    Article  ADS  MathSciNet  Google Scholar 

  16. Zagier, D.: Nombres de classes et formes modulaires de poids 3/2. CR Acad. Sci. Paris (A) 281, 883 (1975)

  17. Douglas M.R., Kachru S.: Flux compactification. Rev. Mod. Phys. 79, 733 (2007). http://doi.org/10.1103/RevModPhys.79.733. arXiv:hep-th/0610102

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Denef F., Douglas M.R.: Distributions of flux vacua. JHEP 0405, 072 (2004). http://doi.org/10.1088/1126-6708/2004/05/072. arXiv:hep-th/0404116

    Article  ADS  MathSciNet  Google Scholar 

  19. Dijkgraaf R., Moore G.W., Verlinde E.P., Verlinde H.L.: Elliptic genera of symmetric products and second quantized strings. Commun. Math. Phys. 185, 197 (1997). http://doi.org/10.1007/s002200050087. arXiv:hep-th/9608096

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Andrianopoli L., D’Auria R., Ferrara S., Lledo M.A.: 4-D gauged supergravity analysis of type IIB vacua on K3 ×  T**2/Z(2). JHEP 0303, 044 (2003). http://doi.org/10.1088/1126-6708/2003/03/044. arXiv:hep-th/0302174

    Article  ADS  MathSciNet  Google Scholar 

  21. Vafa C., Witten E.: A Strong coupling test of S duality. Nucl. Phys. B 431, 3 (1994). http://doi.org/10.1016/0550-3213(94)90097-3 arXiv:hep-th/9408074

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Maulik, D., Toda, Y.: Gopakumar–Vafa Invariants via Vanishing Cycles. arXiv:1610.07303 [math.AG].

  23. Yamaguchi S., Yau S.T.: Topological string partition functions as polynomials. JHEP 0407, 047 (2004). http://doi.org/10.1088/1126-6708/2004/07/047 arXiv:hep-th/0406078

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnav Tripathy.

Additional information

Communicated by X. Yin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachru, S., Tripathy, A. BPS Jumping Loci are Automorphic. Commun. Math. Phys. 360, 919–933 (2018). https://doi.org/10.1007/s00220-018-3090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3090-3

Navigation