Skip to main content
Log in

Measurement Uncertainty Relations for Discrete Observables: Relative Entropy Formulation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a new information-theoretic formulation of quantum measurement uncertainty relations, based on the notion of relative entropy between measurement probabilities. In the case of a finite-dimensional system and for any approximate joint measurement of two target discrete observables, we define the entropic divergence as the maximal total loss of information occurring in the approximation at hand. For fixed target observables, we study the joint measurements minimizing the entropic divergence, and we prove the general properties of its minimum value. Such a minimum is our uncertainty lower bound: the total information lost by replacing the target observables with their optimal approximations, evaluated at the worst possible state. The bound turns out to be also an entropic incompatibility degree, that is, a good information-theoretic measure of incompatibility: indeed, it vanishes if and only if the target observables are compatible, it is state-independent, and it enjoys all the invariance properties which are desirable for such a measure. In this context, we point out the difference between general approximate joint measurements and sequential approximate joint measurements; to do this, we introduce a separate index for the tradeoff between the error of the first measurement and the disturbance of the second one. By exploiting the symmetry properties of the target observables, exact values, lower bounds and optimal approximations are evaluated in two different concrete examples: (1) a couple of spin-1/2 components (not necessarily orthogonal); (2) two Fourier conjugate mutually unbiased bases in prime power dimension. Finally, the entropic incompatibility degree straightforwardly generalizes to the case of many observables, still maintaining all its relevant properties; we explicitly compute it for three orthogonal spin-1/2 components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ozawa M.: Position measuring interactions and the Heisenberg uncertainty principle. Phys. Lett. A 299, 1–7 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ozawa M.: Physical content of Heisenberg’s uncertainty relation: limitation and reformulation. Phys. Lett. A 318, 21–29 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ozawa M.: Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A 67, 042105 (2003)

    Article  ADS  Google Scholar 

  4. Ozawa M.: Uncertainty relations for joint measurements of noncommuting observables. Phys. Lett. A 320, 367–374 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ozawa M.: Heisenberg’s original derivation of the uncertainty principle and its universally valid reformulations. Curr. Sci. 109, 2006–2016 (2015)

    Article  Google Scholar 

  6. Werner R.F.: The uncertainty relation for joint measurement of position and momentum. Quantum Inf. Comput. 4, 546–562 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Busch P., Lahti P., Werner R.F.: Measurement uncertainty relations. J. Math. Phys. 55, 042111 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Busch P., Lahti P., Werner R.F.: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys. 86, 1261–1281 (2014)

    Article  ADS  Google Scholar 

  9. Busch P., Lahti P., Werner R.F.: Heisenberg uncertainty for qubit measurements. Phys. Rev. A 89, 012129 (2014)

    Article  ADS  Google Scholar 

  10. Werner R.F.: Uncertainty relations for general phase spaces. Front. Phys. 11, 110305 (2016)

    Article  Google Scholar 

  11. Busch P., Heinonen T., Lahti P.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155–176 (2007)

    Article  ADS  Google Scholar 

  12. Dammeier L., Schwonnek R., Werner R.F.: Uncertainty relations for angular momentum. New J. Phys. 17, 093046 (2015)

    Article  ADS  Google Scholar 

  13. Abbott A.A., Alzieu P.-L., Hall M.J.W., Branciard C.: Tight state-independent uncertainty relations for qubits. Mathematics 4, 8 (2016)

    Article  MATH  Google Scholar 

  14. Heisenberg W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschr. Phys. 43, 172–198 (1927)

    Article  ADS  MATH  Google Scholar 

  15. Robertson H.: The uncertainty principle. Phys. Rev. 34, 163–164 (1929)

    Article  ADS  Google Scholar 

  16. Kraus K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070–3075 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  17. Maassen H., Uffink J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103–1106 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  18. Krishna M., Parthasarathy K.R.: An entropic uncertainty principle for quantum measurements. Sankhya Indian J. Stat. 64, 842–851 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Wehner S., Winter A.: Entropic uncertainty relations—a survey. New J. Phys. 12, 025009 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kaniewski J., Tomamichel M., Wehner S.: Entropic uncertainty from effective anticommutators. Phys. Rev. A 90, 012332 (2014)

    Article  ADS  Google Scholar 

  21. Abdelkhalek K., Schwonnek R., Maassen H., Furrer F., Duhme J., Raynal P., Englert B-G., Werner R.F.: Optimality of entropic uncertainty relations. Int. J. Quantum Inf. 13, 1550045 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Coles P.J., Berta M., Tomamichel M., Whener S.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Holevo A.S.: Statistical Structure of Quantum Theory, Lecture Notes in Physics. Springer, Berlin (2001)

    Book  Google Scholar 

  24. Busch P., Grabowski M., Lahti P.: Operational Quantum Physics. Springer, Berlin (1997)

    MATH  Google Scholar 

  25. Busch P., Lahti P., Pellonpää J.-P., Ylinen K.: Quantum Measurement. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  26. Busch P., Heinosaari T.: Approximate joint measurements of qubit observables. Quantum Inf. Comp. 8, 797–818 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Heinosaari T., Wolf M.M.: Nondisturbing quantum measurements. J. Math. Phys. 51, 092201 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Heinosaari T., Miyadera T.: Universality of sequential quantum measurements. Phys. Rev. 91, 022110 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Appleby D.M.: Error principle. Int. J. Theoret. Phys. 37, 2557–2572 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Appleby D.M.: Quantum Errors and Disturbances: Response to Busch, Lahti and Werner, Entropy 18, 174 (2016)

    Article  Google Scholar 

  31. Buscemi F., Hall M.J.W., Ozawa M., Wilde M.M.: Noise and disturbance in quantum measurements: an information-theoretic approach. Phys. Rev. Lett. 112, 050401 (2014)

    Article  ADS  Google Scholar 

  32. Abbot A.A., Branciard C.: Noise and disturbance of Qubit measurements: An information-theoretic characterisation. Phys. Rev. A 94, 062110 (2016)

    Article  ADS  Google Scholar 

  33. Coles P.J., Furrer F.: State-dependent approach to entropic measurement–disturbance relations. Phys. Lett. A 379, 105–112 (2015)

    Article  ADS  MATH  Google Scholar 

  34. Barchielli A., Gregoratti M., Toigo A.: Measurement uncertainty relations for position and momentum: Relative entropy formulation. Entropy 19, 301 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. Burnham K.P., Anderson D.R.: Model Selection and Multi-Model Inference. 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  36. Cover T.M., Thomas J.A.: Elements of Information Theory. 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  37. Ohya M., Petz D.: Quantum Entropy and Its Use. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  38. Barchielli A., Lupieri G.: Instruments and channels in quantum information theory. Opt. Spectrosc. 99, 425–432 (2005)

    Article  ADS  MATH  Google Scholar 

  39. Barchielli A., Lupieri G.: Quantum measurements and entropic bounds on information transmission. Quantum Inf. Comput. 6, 16–45 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Barchielli A., Lupieri G.: Instruments and mutual entropies in quantum information. Banach Center Publ. 73, 65–80 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Maccone L.: Entropic information-disturbance tradeoff. Europhys. Lett. 77, 40002 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. Davies E.B.: Quantum Theory of Open Systems. Academic, London (1976)

    MATH  Google Scholar 

  43. Holevo A.S.: Quantum Systems, Channels, Information. de Gruiter, Berlin (2012)

    Book  MATH  Google Scholar 

  44. Heinosaari T., Ziman M.: The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  45. Heinosaari T., Miyadera T., Ziman M.: An invitation to quantum incompatibility. J. Phys. A Math. Theor. 49, 123001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Topsøe F.: Basic concepts, identities and inequalities—the toolkit of information theory. Entropy 3, 162–190 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Pedersen G.K.: Analysis Now. Springer, New York (1989)

    Book  MATH  Google Scholar 

  48. Busch P., Heinosaari T., Schultz J., Stevens N.: Comparing the degrees of incompatibility inherent in probabilistic physical theories. Europhys. Lett. 103, 10002 (2013)

    Article  ADS  Google Scholar 

  49. Heinosaari T., Schultz J., Toigo A., Ziman M.: Maximally incompatible quantum observables. Phys. Lett. A 378, 1695–1699 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Keyl M., Werner R.F.: Optimal cloning of pure states, testing single clones. J. Math. Phys. 40, 3283–3299 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Werner R.F.: Optimal cloning of pure states. Phys. Rev. A 58, 1827–1832 (1998)

    Article  ADS  Google Scholar 

  52. Lahti P.: Coexistence and joint measurability in quantum mechanics. Int. J. Theor. Phys. 42, 893–906 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wootters W.K., Fields D.B.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  54. Durt T., Englert B.-G., Bengtsson I., Zyczkowsky K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010)

    Article  MATH  Google Scholar 

  55. Bandyopadhyay S., Boykin P.O., Roychowdhury V., Vatan F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  56. Appleby, D.M.: Properties of the extended Clifford group with applications to SIC-POVMs and MUBs. arXiv:0909.5233

  57. Carmeli C., Schultz J., Toigo A.: Covariant mutually unbiased bases. Rev. Math. Phys. 28, 1650009 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Lang, S.: Algebra, 3rd edition, Graduate Texts in Mathematics, 211 Springer, New York (2002)

  59. Carmeli C., Heinosaari T., Toigo A.: Informationally complete joint measurements on finite quantum systems. Phys. Rev. A 85, 012109 (2012)

    Article  ADS  Google Scholar 

  60. Heinosaari T., Jivulescu M.A., Reitzner D., Ziman M.: Approximating incompatible von Neumann measurements simultaneously. Phys. Rev. A 82, 032328 (2010)

    Article  ADS  Google Scholar 

  61. Berta M., Christandl M., Colbeck R., Renes J.M., Renner R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  62. Frank R. L., Lieb E.H.: Extended quantum conditional entropy and quantum uncertainty inequalities. Commun. Math. Phys. 323, 487–495 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Weyl H.: Symmetry. Princeton University Press, Princeton (1952)

    Book  MATH  Google Scholar 

  64. Carmeli C., Heinosaari T., Toigo A.: Sequential measurements of conjugate observables. J. Phys. A Math. Theor. 44, 285304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. Carmeli C., Heinosaari T., Schultz J., Toigo A.: Tasks and premises in quantum state determination. J. Phys. A Math. Theor. 47, 075302 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Barchielli.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barchielli, A., Gregoratti, M. & Toigo, A. Measurement Uncertainty Relations for Discrete Observables: Relative Entropy Formulation. Commun. Math. Phys. 357, 1253–1304 (2018). https://doi.org/10.1007/s00220-017-3075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3075-7

Navigation