Skip to main content
Log in

Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarithmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selberg A.: . Gelfond. Arch. Math. Naturvid. 44, 159–171 (1941)

    MATH  Google Scholar 

  2. Selberg A.: Bemerkninger om et multipelt integral. Norsk. Mat. Tidsskr. 24, 71–78 (1944)

    Google Scholar 

  3. Kadell K.W.J.: A proof of some q-analogues of Selberg’s integral for k = 1. SIAM J. Math. Anal. 19, 944–968 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kadell K.W.J.: The Selberg–Jack symmetric functions. Adv. Math. 130, 33–102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dunne G.V., M.: Resurgence and trans-series in quantum field theory: the \({\mathbb{CP}^{N-1}}\) model. JHEP11, 170 (2012). arXiv:1210.2423 [hep-th]

    Article  Google Scholar 

  6. van Diejen, J., Spiridonov, V.: Elliptic selberg integrals. Intern. Math. Res. Notices 2001, 1083–1110 (2001)

  7. Forrester P.J., Warnaar S.O.: The importance of the Selberg integral. Bull. Am. Math. Soc. (N.S.) 45, 489–534 (2008) arXiv:0710.3981 [math.CA]

    Article  MathSciNet  MATH  Google Scholar 

  8. Cho P.L., Kraus P.: Symplectic SUSY gauge theories with antisymmetric matter. Phys. Rev. D 54, 7640–7649 (1996) arXiv:hep-th/9607200 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  9. Csaki C., Skiba W., Schmaltz M.: Exact results and duality for SP(2N) SUSY gauge theories with an antisymmetric tensor. Nucl. Phys. B 487, 128–140 (1997) arXiv:hep-th/9607210 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Seiberg N.: Exact results on the space of vacua of four-dimensional SUSY gauge theories. Phys. Rev. D 49, 6857–6863 (1994) arXiv:hep-th/9402044 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  11. Seiberg N.: Electric-magnetic duality in supersymmetric non-Abelian gauge theories. Nucl. Phys. B 435, 129–146 (1995) arXiv:hep-th/9411149 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Csaki C., Schmaltz M., Skiba W.: A Systematic approach to confinement in \(\mathcal{N}=1\) supersymmetric gauge theories. Phys. Rev. Lett. 78, 799–802 (1997). arXiv:hep-th/9610139

    Article  Google Scholar 

  13. Csaki C., Schmaltz M., Skiba W.: Confinement in \(\mathcal{N}=1\) SUSY gauge theories and model building tools. Phys. Rev. D 55, 7840–7858 (1997) arXiv:hep-th/9612207 [hep-th]

    Article  MathSciNet  Google Scholar 

  14. Benini F., Nishioka T., Yamazaki M.: 4d Index to 3d index and 2d TQFT. Phys. Rev. D 86, 065015 (2012) arXiv:1109.0283 [hep-th]

    Article  ADS  Google Scholar 

  15. Razamat S.S., Willett B.: Global properties of supersymmetric theories and the lens space. Commun. Math. Phys. 334(2), 661–696 (2015) arXiv:1307.4381 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Spiridonov, V.P.: Rarefied elliptic hypergeometric functions. arXiv:1609.00715 [math.CA]

  17. Minahan J.A., Nedelin A.: Phases of planar 5-dimensional supersymmetric Chern–Simons theory. JHEP 12, 049 (2014) arXiv:1408.2767 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010) arXiv:0906.3219 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Wyllard N.: A N-1 conformal Toda field theory correlation functions from conformal \(\mathcal{N}=2\) SU(N) quiver gauge theories. JHEP 11, 002 (2009) arXiv:0907.2189 [hep-th]

    Article  MathSciNet  Google Scholar 

  20. Kimura T.: Matrix model from \(\mathcal{N} = 2\) orbifold partition function. JHEP 09, 015 (2011) arXiv:1105.6091 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  21. Bonelli G., Tanzini A.: Hitchin systems, \(\mathcal{N} = 2\) gauge theories and W-gravity. Phys. Lett. B 691, 111–115 (2010) arXiv:0909.4031 [hep-th]

    Article  MathSciNet  Google Scholar 

  22. Belavin V., Feigin B.: Super Liouville conformal blocks from \({\mathcal{N}=2}\) SU(2) quiver gauge theories. JHEP 07, 079 (2011) arXiv:1105.5800 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  23. Nishioka T., Tachikawa Y.: Central charges of para-Liouville and Toda theories from M-5-branes. Phys. Rev. D 84, 046009 (2011) arXiv:1106.1172 [hep-th]

    Article  ADS  Google Scholar 

  24. Bonelli G., Maruyoshi K., Tanzini A.: Instantons on ALE spaces and super Liouville conformal field theories. JHEP 08, 056 (2011) arXiv:1106.2505 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Bonelli G., Maruyoshi K., Tanzini A.: Gauge theories on ALE space and super Liouville correlation functions. Lett. Math. Phys. 101, 103–124 (2012) arXiv:1107.4609 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Dotsenko V.S., Fateev V.A.: Conformal algebra and multipoint correlation functions in two-dimensional statistical models. Nucl. Phys. B 240, 312 (1984)

    Article  ADS  Google Scholar 

  27. Di Francesco P., Ginsparg P.H., Zinn-Justin J.: 2D Gravity and random matrices. Phys. Rep. 254, 1–133 (1995) arXiv:hep-th/9306153 [hep-th]

    Article  ADS  Google Scholar 

  28. Marino, M.: Les Houches lectures on matrix models and topological strings. arXiv:hep-th/0410165 [hep-th]

  29. Dunne, G.V., Ünsal, M.: What is QFT? Resurgent trans-series, Lefschetz thimbles, and new exact saddles, PoS LATTICE2015, 010 (2016). arXiv:1511.05977 [hep-lat]

  30. Cvitanović, P.: Group Theory: Birdtracks, Lie’s and Exceptional Groups. Princeton University Press, Princeton (2008). http://press.princeton.edu/titles/8839.html.

  31. Dolivet Y., Tierz M.: Chern–Simons matrix models and Stieltjes–Wigert polynomials. J. Math. Phys. 48, 023507 (2007) arXiv:hep-th/0609167 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs, 2nd edn. Oxford University Press, Oxford (1999)

  33. Dijkgraaf R., Vafa C.: Matrix models, topological strings, and supersymmetric gauge theories. Nucl. Phys. B 644, 3–20 (2002) arXiv:hep-th/0206255 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Dijkgraaf R., Vafa C.: On geometry and matrix models. Nucl. Phys. B 644, 21–39 (2002) arXiv:hep-th/0207106 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Dijkgraaf, R., Vafa, C.: A Perturbative Window into Nonperturbative Physics. arXiv:hep-th/0208048 [hep-th]

  36. Borot, G., Eynard, B., Orantin, N.: Abstract loop equations, topological recursion and applications. Commun. Numbers Theory Phys. 9(1) (2015). arXiv:1303.5808 [math-ph]

  37. Eynard, B., Orantin, N.: Invariants of Algebraic Curves and Topological Expansion. arXiv:math-ph/0702045 [math-ph]

  38. Bouchard V., Eynard B.: Think globally, compute locally. JHEP 1302, 143 (2013) arXiv:1211.2302 [math-ph]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Borot G., Shadrin S.: Blobbed topological recursion: properties and applications. Math. Proc. Camb. Philos. Soc. 162(1), 39–87 (2017) arXiv:1502.00981 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  40. Chekhov L., Eynard B., Marchal O.: Topological expansion of beta-ensemble model and quantum algebraic geometry in the sectorwise approach. Theor. Math. Phys. 166, 141–185 (2011) arXiv:1009.6007 [math-ph]

    Article  MATH  Google Scholar 

  41. Eynard, B., Orantin, N.: About the x–y Symmetry of the F g Algebraic Invariants. arXiv:1311.4993 [math-ph]

  42. Dunin-Barkowski, P., Norbury, P., Orantin, N., Popolitov, A., Shadrin, S.: Dubrovin’s superpotential as a global spectral curve. J. Inst. Math. Jussieu. arXiv:1509.06954 [math-ph]

  43. Faber C., Shadrin S., Zvonkine D.: Tautological relations and the r-spin Witten conjecture. Ann. Sci. Éc. Norm. Supér. Série 4 43(4), 621–658 (2010) arXiv:math/0612510 [math]

    MathSciNet  MATH  Google Scholar 

  44. Forrester P.J., Warnaar S.O.: The importance of the Selberg integral. Bull. Am. Math. Soc. (N.S.) 45, 489–534 (2008) arXiv:math/0710.3981 [math]

    Article  MathSciNet  MATH  Google Scholar 

  45. Kadell, K.W.J.: An integral for the product of two Selberg-Jack symmetric polynomials. Compos. Math. 87: 5–43. (1993). http://eudml.org/doc/90228.

  46. Mironov A., Morozov A., Shakirov S.: A direct proof of AGT conjecture at beta = 1. JHEP 02, 067 (2011) arXiv:1012.3137 [hep-th]

    Article  MATH  ADS  Google Scholar 

  47. Alba V.A., Fateev V.A., Litvinov A.V., Tarnopolskiy G.M.: On combinatorial expansion of the conformal blocks arising from AGT conjecture. Lett. Math. Phys. 98, 33–64 (2011) arXiv:1012.1312 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Nekrasov, N.A.: Seiberg-Witten prepotential from instanton counting, In: International Congress of Mathematicians (ICM 2002) Beijing, China, 20–28 August 2002 (2003). arXiv:hep-th/0306211 [hep-th] http://alice.cern.ch/format/showfull?sysnb=2380672.

  49. Okounkov, A.: Lectures on K-Theoretic Computations in Enumerative Geometry. arXiv:1512.07363 [math.AG]

  50. Frenkel, I.B., Turaev, V.G.: Elliptic Solutions of the Yang–Baxter Equation and Modular Hypergeometric Functions, pp. 171–204. Birkhäuser Boston, Boston, MA (1997). https://doi.org/10.1007/978-1-4612-4122-5_9.

  51. Mironov A., Morozov A., Shakirov S., Smirnov A.: Proving AGT conjecture as HS duality: extension to five dimensions. Nucl. Phys. B 855, 128–151 (2012) arXiv:1105.0948 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. Dijkgraaf, R, Vafa C.: Toda Theories, Matrix Models, Topological Strings, and \(\mathcal{N} = 2\) Gauge Systems. arXiv:0909.2453 [hep-th]

  53. Nekrasov N., Witten E.: The omega deformation, branes, integrability, and Liouville theory. JHEP 09, 092 (2010) arXiv:1002.0888 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. Alfimov M.N., Tarnopolsky G.M.: Parafermionic Liouville field theory and instantons on ALE spaces. JHEP 02, 036 (2012) arXiv:1110.5628 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. Yagi J.: Compactification on the Ω-background and the AGT correspondence. JHEP 09, 101 (2012) arXiv:1205.6820 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  56. Maulik, D., Okounkov, A.: Quantum Groups and Quantum Cohomology. arXiv:1211.1287 [math.AG]

  57. Tan M.-C.: M-theoretic derivations of 4d–2d dualities: from a geometric langlands duality for surfaces, to the AGT correspondence, to integrable systems. JHEP 07, 171 (2013) arXiv:1301.1977 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. Teschner J., Vartanov G.S.: Supersymmetric gauge theories, quantization of \({\mathcal M}_{\rm flat}\), and conformal field theory. Adv. Theor. Math. Phys. 19, 1–135 (2015) arXiv:1302.3778 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  59. Aganagic, M., Haouzi, N., Kozcaz, C., Shakirov, S.: Gauge/Liouville Triality. arXiv:1309.1687 [hep-th]

  60. Mironov A., Morozov A., Zenkevich Y.: On elementary proof of AGT relations from six dimensions. Phys. Lett. B 756, 208–211 (2016) arXiv:1512.06701 [hep-th]

    Article  MATH  ADS  Google Scholar 

  61. Nekrasov N.: BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and qq-characters. JHEP 03, 181 (2016) arXiv:1512.05388 [hep-th]

    Article  MATH  ADS  Google Scholar 

  62. Córdova C., Jafferis, D.L.: Toda Theory from Six Dimensions. arXiv:1605.03997 [hep-th]

  63. Schiappa R., Wyllard N.: An A r threesome: matrix models, 2d CFTs and 4d \({\mathcal N}\) =2 gauge theories. J. Math. Phys. 51, 082304 (2010) arXiv:0911.5337 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  64. Itoyama H., Oota T., Yoshioka R.: q-Virasoro/W algebra at root of unity and parafermions. Nucl. Phys. B 889, 25–35 (2014) arXiv:1408.4216 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  65. Sulkowski P.: Matrix models for 2* theories. Phys. Rev. D 80, 086006 (2009) arXiv:0904.3064 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  66. Mironov A., Morozov A., Zenkevich Y.: Spectral duality in elliptic systems, six-dimensional gauge theories and topological strings. JHEP 05, 121 (2016) arXiv:1603.00304 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  67. Razamat S.S., Yamazaki M.: S-duality and the \({\mathcal{N}=2}\) Lens Space Index. JHEP 10, 048 (2013) arXiv:1306.1543 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clay Córdova.

Additional information

Communicated by X. Yin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova, C., Heidenreich, B., Popolitov, A. et al. Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models. Commun. Math. Phys. 361, 1235–1274 (2018). https://doi.org/10.1007/s00220-017-3072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3072-x

Navigation