Skip to main content
Log in

Negative Energy Ground States for the L 2-Critical NLSE on Metric Graphs

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the existence of ground states with prescribed mass for the focusing nonlinear Schrödinger equation with L 2-critical power nonlinearity on noncompact quantum graphs. We prove that, unlike the case of the real line, for certain classes of graphs there exist ground states with negative energy for a whole interval of masses. A key role is played by a thorough analysis of Gagliardo–Nirenberg inequalities and by estimates of the optimal constants. Most of the techniques are new and suited to the investigation of variational problems on metric graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adami R., Cacciapuoti C., Finco D., Noja D.: Fast solitons on star graphs. Rev. Math. Phys. 23(4), 409–451 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adami R., Cacciapuoti C., Finco D., Noja D.: On the structure of critical energy levels for the cubic focusing NLS on star graphs. J. Phys. A 45(19), 192001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Adami R., Cacciapuoti C., Finco D., Noja D.: Variational properties and orbital stability of standing waves for NLS equation on a star graph. J. Diff. Eq. 257(10), 3738–3777 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Adami R., Cacciapuoti C., Finco D., Noja D.: Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy. J. Diff. Eq. 260(10), 7397–7415 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Adami R., Golse F., Teta A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127, 1193–1220 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Adami R., Serra E., Tilli P.: NLS ground states on graphs. Calc. Var. PDEs 54(1), 743–761 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adami R., Serra E., Tilli P.: Threshold phenomena and existence results for NLS ground states on metric graphs. J. Func. An. 271(1), 201–223 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ali Mehmeti F.: Nonlinear waves in networks. Akademie Verlag, Berlin (1994)

    MATH  Google Scholar 

  9. Below, J. von: An existence result for semilinear parabolic network equations with dynamical node conditions. In: Pitman Research Notes in Mathematical Series 266, pp. 274–283. Longman, Harlow Essex (1992)

  10. Benedikter N., de Oliveira G., Schlein B.: Quantitative derivation of the Gross–Pitaevskii equation. Comm. Pure App. Math. 68(8), 1399–1482 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berkolaiko, G., Kuchment, P.: Introduction to quantum graphs. Mathematical Surveys and Monographs 186. AMS, Providence (2013)

  12. Bona J., Cascaval R.C.: Nonlinear dispersive waves on trees. Can. J. App. Math 16, 1–18 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Brezis H., Lieb E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cacciapuoti C., Finco D., Noja D.: Topology induced bifurcations for the NLS on the tadpole graph. Phys. Rev. E 91(1), 013206 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Caudrelier V.: On the inverse scattering method for integrable PDEs on a star graph. Commun. Math. Phys. 338(2), 893–917 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes 10. American Mathematical Society, Providence (2003)

  17. Chen T., Pavlovic N.: The quintic NLS as the mean field limit of a boson gas with three-body interactions. J. Func. An. 260(4), 959–997 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen X., Holmer J.: Focusing quantum many-body dynamics: the rigorous derivation of the 1D focusing cubic nonlinear Schrdinger equation. Arch. Rat. Mech. An. 221(2), 631–676 (2016)

    Article  MATH  Google Scholar 

  19. Donley E.A., Claussen N.R., Cornish S.L., Roberts J.L., Cornell E.A., Wieman C.E.: Dynamics of collapsing and exploding Bose–Einstein condensates. Nature 412, 295–299 (2001)

    Article  ADS  Google Scholar 

  20. Erdős L., Schlein B., Yau H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22(4), 1099–1156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Erdős L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. 172(1), 291–370 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Exner, P., Keating, J.P., Kuchment, P., Sunada, T., Teplyaev, A.: Analysis on graphs and its applications. Proc. Sympos. Pure Math. 77. Amer. Math. Soc., Providence (2008)

  24. Friedlander L.: Extremal properties of eigenvalues for a metric graph. Ann. Inst. Fourier (Grenoble) 55(1), 199–211 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gnutzmann S., Waltner D.: Stationary waves on nonlinear quantum graphs: general framework and canonical perturbation theory. Phys. Rev. E 93(3), 032204 (2016)

    Article  ADS  Google Scholar 

  26. Lieb E.H., Seiringer R.: Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)

    Article  ADS  Google Scholar 

  27. Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  ADS  Google Scholar 

  28. Lieb E.H., Yngvason J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)

    Article  ADS  Google Scholar 

  29. Lorenzo M., Luccia M., Merlo V., Ottaviani I., Salvato M., Cirillo M., Müller M., Weimann T., Castellano M.G., Chiarello F., Torrioli G.: On Bose–Einstein condensation in Josephson junctions star graph arrays. Phys. Lett. A 378(7-8), 655–658 (2014)

    Article  ADS  Google Scholar 

  30. Marzuola J., Pelinovsky D.: Ground state on the dumbbell graph. App. Math. Res. EX. 1, 98–145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Noja D., Pelinovsky D., Shaikhova G.: Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph. Nonlinearity 28(7), 243–278 (2015)

    Article  MATH  Google Scholar 

  32. Pelinovsky, D., Schneider, G.: Bifurcations of standing localized waves on periodic graphs. arXiv:1603.05463 (2016)

  33. Pickl P.: Derivation of the time dependent Gross–Pitaevskii equation with external fields. Rev. Math. Phys. 27(1), 1550003 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Post, O.: Spectral analysis on graph-like spaces. Lecture Notes in Mathematics 2039. Springer, Heidelberg (2012)

  35. Sabirov K., Sobirov Z., Babajanov D., Matrasulov D.: Stationary nonlinear Schrödinger equation on simplest graphs. Phys. Lett. A 377(12), 860–865 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Sobirov Z., Matrasulov D., Sabirov K., Sawada S., Nakamura K.: Integrable nonlinear Schrödinger equation on simple networks: Connection formula at vertices. Phys. Rev. E 81, 066602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  37. Tentarelli L.: NLS ground states on metric graphs with localized nonlinearities. J. Math. An. App. 433(1), 291–304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Adami.

Additional information

Communicated by W. Schlag

Riccardo Adami is partially supported by the FIRB 2012 project “Dispersive dynamics: Fourier Analysis and Variational Methods”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adami, R., Serra, E. & Tilli, P. Negative Energy Ground States for the L 2-Critical NLSE on Metric Graphs. Commun. Math. Phys. 352, 387–406 (2017). https://doi.org/10.1007/s00220-016-2797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2797-2

Navigation