Skip to main content
Log in

Abelian Duality on Globally Hyperbolic Spacetimes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study generalized electric/magnetic duality in Abelian gauge theory by combining techniques from locally covariant quantum field theory and Cheeger–Simons differential cohomology on the category of globally hyperbolic Lorentzian manifolds. Our approach generalizes previous treatments using the Hamiltonian formalism in a manifestly covariant way and without the assumption of compact Cauchy surfaces. We construct semi-classical configuration spaces and corresponding presymplectic Abelian groups of observables, which are quantized by the CCR-functor to the category of C*-algebras. We demonstrate explicitly how duality is implemented as a natural isomorphism between quantum field theories. We apply this formalism to develop a fully covariant quantum theory of self-dual fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bär, C.: Green-hyperbolic operators on globally hyperbolic spacetimes. Commun. Math. Phys. 333, 1585 (2015). arXiv:1310.0738 [math-ph]

  2. Bär C., Becker C.: Differential Characters. Lect. Notes Math., vol. 2112. Springer, Berlin (2014)

    Google Scholar 

  3. Bär, C., Fredenhagen, K.: (eds.): Quantum Field Theory on Curved Spacetimes. Lect. Notes Phys. vol. 786 (2009)

  4. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society, Zürich (2007). arXiv:0806.1036 [math.DG]

  5. Becker, C., Benini, M., Schenkel, A., Szabo, R.J.: Cheeger–Simons differential characters with compact support and Pontryagin duality. arXiv:1511.00324 [math.DG]

  6. Becker, C., Schenkel, A., Szabo, R.J.: Differential cohomology and locally covariant quantum field theory. arXiv:1406.1514 [hep-th]

  7. Beem J.K., Ehrlich P., Easley K.: Global Lorentzian Geometry. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  8. Belov, D., Moore, G.W.: Holographic action for the self-dual field. arXiv:hep-th/0605038

  9. Benini, M., Dappiaggi, C., Hack, T.-P., Schenkel, A.: A C*-algebra for quantized principal U(1)-connections on globally hyperbolic Lorentzian manifolds. Commun. Math. Phys. 332, 477 (2014). arXiv:1307.3052 [math-ph]

  10. Benini, M., Dappiaggi, C., Schenkel, A.: Quantized Abelian principal connections on Lorentzian manifolds. Commun. Math. Phys. 330, 123 (2014). arXiv:1303.2515 [math-ph]

  11. Benini, M., Dappiaggi C., Schenkel, A.: Quantum field theory on affine bundles. Ann. Henri Poincaré 15, 171 (2014). arXiv:1210.3457 [math-ph]

  12. Benini, M., Schenkel, A., Szabo, R.J.: Homotopy colimits and global observables in Abelian gauge theory. Lett. Math. Phys. 105, 1193 (2015). arXiv:1503.08839 [math-ph]

  13. Bernal A.N., Sanchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43 (2005) arXiv:gr-qc/0401112

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Bernal A.N., Sanchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183 (2006) arXiv:gr-qc/0512095

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003) arXiv:math-ph/0112041

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Cheeger J., Simons J.: Differential characters and geometric invariants. Lect. Notes Math. 1167, 50 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101, 265 (2012). arXiv:1104.1374 [gr-qc]

  18. Dappiaggi, C., Siemssen, D.: Hadamard states for the vector potential on asymptotically flat spacetimes. Rev. Math. Phys. 25, 1350002 (2013). arXiv:1106.5575 [gr-qc]

  19. Elliott, C.: Abelian duality for generalised Maxwell theories. arXiv:1402.0890 [math.QA]

  20. Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25, 1350008 (2013). arXiv:1201.3295 [math-ph]

  21. Fewster, C.J., Lang, B.: Dynamical locality of the free Maxwell field. Ann. Henri Poincaré 17, 401 (2016). arXiv:1403.7083 [math-ph]

  22. Freed D.S.: Dirac charge quantization and generalized differential cohomology. Surv. Diff. Geom. VII, 129 (2000) arXiv:hep-th/0011220

    MATH  MathSciNet  Google Scholar 

  23. Freed D.S., Moore G.W., Segal G.: The uncertainty of fluxes. Commun. Math. Phys. 271, 247 (2007) arXiv:hep-th/0605198

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Freed D.S., Moore G.W., Segal G.: Heisenberg groups and noncommutative fluxes. Ann. Phys. 322, 236 (2007) arXiv:hep-th/0605200

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  26. Harvey, F.R., Lawson, H.B.Jr., Zweck, J.: The de Rham–Federer theory of differential characters and character duality. Am. J. Math. 125, 791 (2003). arXiv:math.DG/0512251

  27. Manuceau J., Sirugue M., Testard D., Verbeure A.: The smallest C*-algebra for canonical commutation relations. Commun. Math. Phys. 32, 231 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. O’Neill B.: Semi–Riemannian Geometry with Applications to Relativity. Academic Press, Cambridge (1983)

    MATH  Google Scholar 

  29. Sanders, K., Dappiaggi, C., Hack, T.P.: Electromagnetism, local covariance, the Aharonov–Bohm effect and Gauss’ Law. Commun. Math. Phys. 328, 625 (2014). arXiv:1211.6420 [math-ph]

  30. Simons J., Sullivan D.: Axiomatic characterization of ordinary differential cohomology. J. Topol. 1, 45 (2008) arXiv:math.AT/0701077

    Article  MATH  MathSciNet  Google Scholar 

  31. Szabo, R.J.: Quantization of higher Abelian gauge theory in generalized differential cohomology. PoS ICMP 2012, 009 (2012). arXiv:1209.2530 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Benini.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, C., Benini, M., Schenkel, A. et al. Abelian Duality on Globally Hyperbolic Spacetimes. Commun. Math. Phys. 349, 361–392 (2017). https://doi.org/10.1007/s00220-016-2669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2669-9

Navigation