Skip to main content
Log in

Generic Rigidity for Circle Diffeomorphisms with Breaks

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that \({C^r}\)-smooth (\({r > 2}\)) circle diffeomorphisms with a break, i.e., circle diffeomorphisms with a single singular point where the derivative has a jump discontinuity, are generically, i.e., for almost all irrational rotation numbers, not \({C^{1+\varepsilon}}\)-rigid, for any \({\varepsilon > 0}\). This result complements our recent proof, joint with Khanin (Geom Funct Anal 24:2002–2028, 2014), that such maps are generically \({C^1}\)-rigid. It stands in remarkable contrast to the result of Yoccoz (Ann Sci Ec Norm Sup 17:333–361, 1984) that \({C^r}\)-smooth circle diffeomorphisms are generically \({C^{r-1-\varkappa}}\)-rigid, for any \({\varkappa > 0}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d V.I.: Small denominators I: on the mapping of a circle into itself. Izv. Akad. Nauk. Math. Serie 25, 21-86 (1961)

    Google Scholar 

  2. Avila A.: On rigidity of critical circle maps. Bull. Braz. Math. Soc. 44(4), 611–619 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cunha K., Smania D.: Renormalization for piecewise smooth homeomorphisms on the circle. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(3), 441–462 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cunha K., Smania D.: Rigidity for piecewise smooth homeomorphisms on the circle. Adv. Math. 250, 193–226 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dzhalilov A., Teplinsky A.: Certain examples of circle diffeomorphisms with a break. Dopovidi NAN Ukrainy (in Ukrainian) 9, 18–23 (2010)

    MATH  Google Scholar 

  6. de Faria E., de Melo W.: Rigidity of critical circle maps I. J. Eur. Math. Soc. 1(4), 339–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Faria E., de Melo W.: Rigidity of critical circle maps II. J. Am. Math. Soc. 13(2), 343–370 (2000)

    Article  MATH  Google Scholar 

  8. Herman M.R.: Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations. Publ. Math. Inst. Hautes Etudes Sci. 49, 5–234 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Katznelson Y., Orstein D.: The differentiability of conjugation of certain diffeomorphisms of the circle. Ergod. Theory Dynam. Syst. 9, 643–680 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Khanin K., Khmelev D.: Renormalizations and rigidity theory for circle homeomorphisms with singularities of break type. Commun. Math. Phys. 235(1), 69–124 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Khanin K., Kocić S.: Abscence of robust rigidity for circle diffeomorphisms with breaks. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(3), 385–399 (2013)

    Article  ADS  MATH  Google Scholar 

  12. Khanin K., Kocić S.: Renormalization conjecture and rigidity theory for circle diffeomorphisms with breaks. Geom. Funct. Anal. 24, 2002–2028 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khanin, K., Kocić, S., Mazzeo, E.: \({C^1}\)-rigidity of circle diffeomorphisms with breaks for almost all rotation numbers (2011) (preprint: mp-arc 11-102)

  14. Khanin K., Teplinsky A.: Robust rigidity for circle diffeomorphisms with singularities. Invent. Math. 169, 193–218 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Khanin K., Teplinsky A.: Renormalization horseshoe and rigidity theory for circle diffeomorphisms with breaks. Commun. Math. Phys. 320, 347–377 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Khanin K.M., Vul E.B.: Circle homeomorphisms with weak discontinuities. Adv. Sov. Math. 3, 57–98 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Khmelev D.V., Yampolsky M.: The rigidity problem for analytic critical circle maps. Mosc. Math. J. 6(2), 317–351 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Marmi S., Moussa P., Yoccoz J.-C.: Linearization of generalized interval exchange maps. Ann. Math. 176(3), 1583–1646 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sinai Y.G., Khanin K.M.: Smoothness of conjugacies of diffeomorphisms of the circle with rotations. Uspekhi Mat. Nauk 44(1), 57–82 (1989)

    MathSciNet  Google Scholar 

  20. Teplinsky A.: Examples of circle diffeomorphisms with a break which are \({C^1}\)-smoothly but not \({C^{1+\gamma}}\)-smoothly conjugate. Ukrainian Math. J. (to appear) 62(8), 1267–1284 (2011)

    Article  Google Scholar 

  21. Yampolsky M.: Hyperbolicity of renormalization of critical circle maps. Publ. Math. Inst. Hautes Etudes Sci. 96, 1–41 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yoccoz J.-C.: Conjugaison differentiable des difféomorphismes du cercle donc le nombre de rotation vérifie une condition Diophantienne. Ann. Sci. Ec. Norm. Sup. 17, 333–361 (1984)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saša Kocić.

Additional information

Communicated by M. Lyubich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocić, S. Generic Rigidity for Circle Diffeomorphisms with Breaks. Commun. Math. Phys. 344, 427–445 (2016). https://doi.org/10.1007/s00220-016-2615-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2615-x

Keywords

Navigation