Skip to main content
Log in

Conductance and Absolutely Continuous Spectrum of 1D Samples

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We characterize the absolutely continuous spectrum of the one-dimensional Schrödinger operators \({h = -\Delta + v}\) acting on \({\ell^2(\mathbb{Z}_+)}\) in terms of the limiting behaviour of the Landauer–Büttiker and Thouless conductances of the associated finite samples. The finite sample is defined by restricting h to a finite interval \({[1, L] \cap \mathbb{Z}_+}\) and the conductance refers to the charge current across the sample in the open quantum system obtained by attaching independent electronic reservoirs to the sample ends. Our main result is that the conductances associated to an energy interval \({I}\) are non-vanishing in the limit \({L \to \infty}\) iff \({{\rm sp}_{\rm ac}(h) \cap I \neq \emptyset}\). We also discuss the relationship between this result and the Schrödinger Conjecture (Avila, J Am Math Soc 28:579–616, 2015; Bruneau et al., Commun Math Phys 319:501–513, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschbacher W., Jakšić V., Pautrat Y., Pillet C.-A.: Transport properties of quasi-free fermions. J. Math. Phys. 48, 032101 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Avila, A.: On the Kotani-Last and Schrödinger conjectures. J. Am. Math. Soc. 28, 579–616 (2015)

  3. Ben Sâad, R., Pillet, C-A.: A geometric approach to the Landauer–Büttiker formula. J. Math. Phys. 55, 075202 (2014)

  4. Breuer J., Last Y., Strauss Y.: Eigenvalue spacings and dynamical upper bounds for discrete one-dimensional Schrödinger operators. Duke Math. J. 157, 425–460 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruneau, L., Jakšić, V.: (unpublished)

  6. Bruneau, L., Jakšić, V., Pillet, C.A.: Landauer–Büttiker formula and Schrödinger conjecture. Commun. Math. Phys. 319, 501–513 (2013)

  7. Bruneau, L., Jakšić, V., Last, Y., Pillet, C.A.: Landauer–Büttiker and Thouless conductance. Commun. Math. Phys. (2015). doi:10.1007/s00220-015-2321-0

  8. Bruneau, L., Jakšić, V., Last, Y., Pillet, C.A.: What is absolutely continuous spectrum? (In preparation)

  9. Büttiker M., Imry Y., Landauer R., Pinhas S.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207 (1985)

    Article  ADS  Google Scholar 

  10. Carmona R.: One dimensional Schrödinger operators with random or deterministic potentials: New spectral types. J. Funct. Anal. 51, 229–258 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Casati, G., Guarneri, I., Maspero, G.: Landauer and Thouless conductance: a band random matrix approach. J. Phys. I Fr. 7, 729 (1997)

  12. Cornean, H.D., Jensen, A., Moldoveanu, V.: A rigorous proof of the Landauer–Büttiker formula. J. Math. Phys. 46, 042106 (2005)

  13. Deift P., Simon B.: Almost periodic Schrödinger operators III. The absolutely continuous spectrum in one dimension. Commun. Math. Phys. 90, 389–411 (1983)

    MathSciNet  MATH  Google Scholar 

  14. Edwards J.T., Thouless D.J.: Numerical studies of localization in disordered systems. J. Phys. C Solid State Phys. 5, 807–820 (1972)

    Article  ADS  Google Scholar 

  15. Gesztesy F., Simon B.: The xi function. Acta Math. 176, 49–71 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilbert, D.J., Pearson, D.: On subordinacy and analysis of the spectrum of one dimensional Schrödinger operators. J. Math. Anal. 128, 30 (1987)

  17. Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics—an introduction. In: Fröhlich, J., Salmhofer, M., Mastropietro, V., De Roeck, W., Cugliandolo, L.F. (eds.) Quantum Theory from Small to Large Scales. Oxford University Press, Oxford (2012)

  18. Kotani, S.: Lyapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. In: Itÿo, K. (ed.) Stochastic Analysis, pp. 225–247. North-Holland, Amsterdam (1984)

  19. Krutikov, D., Remling, C.: Schrödinger operators with sparse potentials: asymptotics of the Fourier transform of the spectral measure. Commun. Math. Phys. 223, 509–532 (2001)

  20. Landauer R.: Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  21. Landon, B.: Master’s thesis. McGill University, Montreal (2013)

  22. Last, Y.: Conductance and spectral properties. Ph.D. thesis. Technion, Israel (1994)

  23. Last Y.: On the measure of gaps and spectra for discrete 1D Schrödinger operators. Commun. Math. Phys. 149, 347–360 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Last, Y.: A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants. Commun. Math. Phys. 151, 183–192 (1993)

  25. Last, Y., Simon, B.: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135, 329 (1999)

  26. Maslov, V.P., Molchanov, S.A., Gordon, A.Y.: Behavior of generalized eigenfunctions at infinity and the Schrödinger conjecture. Russ. J. Math. Phys. 1, 71 (1993)

  27. Nenciu, G.: Independent electrons model for open quantum systems: Landauer–Büttiker formula and strict positivity of the entropy production. J. Math. Phys. 48, 033302 (2007)

  28. Remling C.: The absolutely continuous spectrum of Jacobi matrices. Ann. Math. 174(1), 125–171 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shamis, M., Sodin, S.: On the measure of the absolutely continuous spectrum for Jacobi matrices. J. Spectr. Theory 1, 349–362 (2011)

  30. Simon, B.: Bounded eigenfunctions and absolutely continuous spectra for one dimensional Schrödinger operators. Proc. Am. Math. Soc. 124, 3361 (1996)

  31. Simon, B.: Schrödinger semigroups. Bull. AMS 7, 447 (1982)

  32. Simon, B.: Szegö’s Theorem and its Descendants. Spectral Theory for \({L^2}\) Perturbations of Orthogonal Polynomials. M.B. Porter Lectures. Princeton University Press, Princeton (2011)

  33. Simon B.: Kotani theory for one dimensional stochastic Jacobi matrices. Commun. Math. Phys. 89, 227–234 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Simon, B.: Orthogonal polynomials with exponentially decaying recursion coefficients. In: Dawson, D., Jakšić, V., Vainberg, B. (eds.) Probability and Mathematical Physics. CRM Proc. and Lecture Notes, vol. 42, pp. 453–463 (2007)

  35. Yafaev, D.R.: Mathematical scattering theory. General theory. In: Translated from the Russian by J. R. Schulenberger. Translations of Mathematical Monographs 105. American Mathematical Society, Providence (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jakšić.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruneau, L., Jakšić, V., Last, Y. et al. Conductance and Absolutely Continuous Spectrum of 1D Samples. Commun. Math. Phys. 344, 959–981 (2016). https://doi.org/10.1007/s00220-015-2501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2501-y

Keywords

Navigation