Skip to main content
Log in

The Condensation Phase Transition in Random Graph Coloring

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Based on a non-rigorous formalism called the “cavity method”, physicists have put forward intriguing predictions on phase transitions in diluted mean-field models, in which the geometry of interactions is induced by a sparse random graph or hypergraph. One example of such a model is the graph coloring problem on the Erdős–Renyi random graph G(n, d/n), which can be viewed as the zero temperature case of the Potts antiferromagnet. The cavity method predicts that in addition to the k-colorability phase transition studied intensively in combinatorics, there exists a second phase transition called the condensation phase transition (Krzakala et al. in Proc Natl Acad Sci 104:10318–10323, 2007). In fact, there is a conjecture as to the precise location of this phase transition in terms of a certain distributional fixed point problem. In this paper we prove this conjecture for k exceeding a certain constant k 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achlioptas D., Friedgut E.: A sharp threshold for k-colorability. Random Struct. Algorithms 14, 63–70 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In: Proceedings of the 49th FOCS, pp. 793–802 (2008)

  3. Bapst, V., Coja-Oghlan, A., Efthymiou, C.: Planting colourings silently (2014). arXiv:1411.0610

  4. Achlioptas D., Naor A.: The two possible values of the chromatic number of a random graph. Ann. Math. 162, 1333–1349 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bordenave, C., Caputo, P.: Large deviations of empirical neighborhood distribution in sparse random graphs. Probab. Theory Relat. Fields (2013, to appear). arXiv:1308.5725

  6. Braunstein A., Mulet R., Pagnani , Weigt , Zecchina R.: Polynomial iterative algorithms for coloring and analyzing random graphs. Phys. Rev. E 68, 036702 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  7. Coja-Oghlan A.: Upper-bounding the k-colorability threshold by counting covers. Electron. J. Combin. 20, P32 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Coja-Oghlan, A., Vilenchik, D.: Chasing the k-colorability threshold. In: Proceedings of the 54th FOCS, pp. 380–389 (2013). A full version is available as arXiv:1304.1063

  9. Coja-Oghlan, A., Zdeborová, L.: The condensation transition in random hypergraph 2-coloring. In: Proceedings of the 23rd SODA, pp. 241–250 (2012)

  10. Contucci P., Dommers S., Giardina C., Starr S.: Antiferromagnetic Potts model on the Erdős–R’enyi random graph. Commun. Math. Phys. 323, 517–554 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Dembo A., Montanari A.: Gibbs measures and phase transitions on sparse random graphs. Braz. J. Probab. Stat. 24(2), 137–211 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Derrida B.: Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B 24(5), 2613–2626 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Derrida B., Spohn H.: Polymers on disordered trees, spin glasses, and traveling waves. J. Stat. Phys. 51(5–6), 817–840 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Erdős P., Rényi A.: On the evolution of random graphs. Magayar Tud. Akad. Mat. Kutato Int. Kozl. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  15. Frieze A., McDiarmid C.: Algorithmic theory of random graphs. Random Struct. Algorithms 10, 5–42 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Janson S., Łuczak T., Ruciński A.: Random Graphs. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  17. Kauzmann W.: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948)

    Article  Google Scholar 

  18. Kirkpatrick T.R., Thirumalai D.: p-spin-interaction spin-glass models: connections with the structural glass problem. Phys. Rev. B 36, 5388 (1987)

    Article  ADS  Google Scholar 

  19. Krzakala, F., Mézard, M., Sausset, F., Sun, Y., Zdeborová, L.: Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices. J. Stat. Mech. P08009 (2012)

  20. Krzakala F., Montanari A., Ricci-Tersenghi F., Semerjian G., Zdeborova L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. 104, 10318–10323 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Krzakala F., Pagnani A., Weigt M.: Threshold values, stability analysis and high-q asymptotics for the coloring problem on random graphs. Phys. Rev. E 70, 046705 (2004)

    Article  ADS  Google Scholar 

  22. McDiarmid, C.: Concentration. In: Habib et al. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195–248. Springer, Berlin (1998)

  23. Mézard M., Montanari A.: Information, Physics and Computation. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  24. Mézard M., Parisi G., Zecchina R.: Analytic and algorithmic solution of random satisfiability problems. Science 297, 812–815 (2002)

    Article  ADS  Google Scholar 

  25. Molloy, M.: The freezing threshold for k-colourings of a random graph. In: Proceedings of the 43rd STOC, pp. 921–930 (2012)

  26. Parisi G.: A sequence of approximated solutions to the S-K model for spin glasses. J. Phys. A 13(4), L115 (1980)

    Article  ADS  Google Scholar 

  27. Ricci-Tersenghi, F., Semerjian, G.: On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms. J. Stat. Mech. P09001 (2009)

  28. Sherrington D., Kirkpatrick S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35(26), 1792–1796 (1975)

    Article  ADS  Google Scholar 

  29. Talagrand M.: The Parisi formula. Ann. Math. 163, 221 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Talagrand M.: Spin Glasses, a Challenge for Mathematicians. Springer, Berlin (2003)

    MATH  Google Scholar 

  31. Warnke, L.: On the method of typical bounded differences (2012). arXiv:1212.5796

  32. Zdeborová L.: Statistical physics of hard optimization problems. Acta Physica Slovaca 59, 169–303 (2009)

    ADS  Google Scholar 

  33. Zdeborová L., Krzakala F.: Phase transition in the coloring of random graphs. Phys. Rev. E 76, 031131 (2007)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Coja-Oghlan.

Additional information

Communicated by H.-T. Yau

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 278857-PTCC.

An extended abstract version of this work appeared in the Proceedings of the 18th International Workshop on Randomization and Computation (‘RANDOM’) 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bapst, V., Coja-Oghlan, A., Hetterich, S. et al. The Condensation Phase Transition in Random Graph Coloring. Commun. Math. Phys. 341, 543–606 (2016). https://doi.org/10.1007/s00220-015-2464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2464-z

Keywords

Navigation