Skip to main content
Log in

Regularized Transformation-Optics Cloaking for the Helmholtz Equation: From Partial Cloak to Full Cloak

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop a very general theory on the regularized approximate invisibility cloaking for the wave scattering governed by the Helmholtz equation in any space dimensions \({N \geq 2}\) via the approach of transformation optics. There are four major ingredients in our proposed theory: (1) The non-singular cloaking medium is obtained by the push-forwarding construction through a transformation that blows up a subset \({K_\varepsilon}\) in the virtual space, where \({\varepsilon \ll 1}\) is an asymptotic regularization parameter. \({K_\varepsilon}\) will degenerate to K 0 as \({\varepsilon \rightarrow +0}\), and in our theory K 0 could be any convex compact set in \({\mathbb{R}^N}\), or any set whose boundary consists of Lipschitz hypersurfaces, or a finite combination of those sets. (2) A general lossy layer with the material parameters satisfying certain compatibility integral conditions is employed right between the cloaked and cloaking regions. (3) The contents being cloaked could also be extremely general, possibly including, at the same time, generic mediums and, sound-soft, sound-hard and impedance-type obstacles, as well as some sources or sinks. (4) In order to achieve a cloaking device of compact size, particularly for the case when \({K_\varepsilon}\) is not “uniformly small”, an assembly-by-components, the (ABC) geometry is developed for both the virtual and physical spaces and the blow-up construction is based on concatenating different components.

Within the proposed framework, we show that the scattered wave field \({u_\varepsilon}\) corresponding to a cloaking problem will converge to u 0 as \({\varepsilon \rightarrow +0}\), with u 0 being the scattered wave field corresponding to a sound-hard K 0. The convergence result is used to theoretically justify the approximate full and partial invisibility cloaks, depending on the geometry of K 0. On the other hand, the convergence results are conducted in a much more general setting than what is needed for the invisibility cloaking, so they are of significant mathematical interest for their own sake. As for applications, we construct three types of full and partial cloaks. Some numerical experiments are also conducted to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Alu A., Engheta N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E. 72, 016623 (2005)

    Article  ADS  Google Scholar 

  3. Ammari H., Ciraolo G., Kang H., Lee H., Milton G.W.: Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Arch. Ration. Mech. Anal. 208, 667–692 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ammari H., Garnier J., Jugnon V., Kang H., Lim M., Lee H.: Enhancement of near-cloaking. Part III: numerical simulations, statistical stability, and related questions. Contemp. Math. 577, 1–24 (2012)

    Article  MathSciNet  Google Scholar 

  5. Ammari H., Kang H., Lee H., Lim M.: Enhancement of near-cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem. Commun. Math. Phys. 317, 253–266 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Ammari H., Kang H., Lee H., Lim M.: Enhancement of near-cloaking. Part II: the Helmholtz equation. Commun. Math. Phys. 317, 485–502 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Cakoni F., Colton D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Chen H., Chan C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D Appl. Phys. 43, 113001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Colton D., Kress R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd Edition. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  10. Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Improvement of cylindrical cloaking with SHS lining. Optics Express 15, 12717–12734 (2007)

    Article  ADS  Google Scholar 

  11. Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Full-wave invisibility of active devices at all frequencies. Commun. Math. Phys. 279, 749–789 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Isotropic transformation optics: approximate acoustic and quantum cloaking. N. J. Phys. 10, 115024 (2008)

    Article  Google Scholar 

  13. Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Electromagnetic wormholes via handlebody constructions. Commun. Math. Phys. 281, 369–385 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Invisibility and inverse prolems. Bull. A.M.S. 46, 55–97 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Cloaking devices, electromagnetic wormholes and transformation optics. SIAM Rev. 51, 3–33 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Greenleaf A., Lassas M., Uhlmann G.: Anisotropic conductivities that cannot be detected by EIT. Physiol. Meas. (special issue on Impedance Tomography) 24, 413 (2003)

    Google Scholar 

  17. Greenleaf A., Lassas M., Uhlmann G.: On nonuniqueness for Calderón’s inverse problem. Math. Res. Lett. 10, 685–693 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Isakov V.: Inverse Problems for Partial Differential Equations. 2nd ed. Springer, New York (2006)

    MATH  Google Scholar 

  19. Kocyigit I., Liu H.Y., Sun H.: Regular scattering patterns from near-cloaking devices and their implications for invisibility cloaking. Inverse Probl. 29, 045005 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kohn R., Onofrei O., Vogelius M., Weinstein M.: Cloaking via change of variables for the Helmholtz equation. Commun. Pure Appl. Math. 63, 973–1016 (2010)

    MATH  MathSciNet  Google Scholar 

  21. Kohn R., Shen H., Vogelius M., Weinstein M.: Cloaking via change of variables in electrical impedance tomography. Inverse Probl. 24, 015016 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. Leonhardt U.: Optical conformal mapping. Science 312, 1777–1780 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Li J., Liu H.Y., Sun H.: Enhanced approximate cloaking by SH and FSH lining. Inverse Probl. 28, 075011 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  24. Li J., Pendry J.B.: Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008)

    Article  ADS  Google Scholar 

  25. Liu H.Y.: Virtual reshaping and invisibility in obstacle scattering. Inverse Probl. 25, 045006 (2009)

    Article  ADS  Google Scholar 

  26. Liu H.Y., Shang Z., Sun H., Zou J.: Singular perturbation of reduced wave equation and scattering from an embedded obstacle. J. Dyn. Differ. Equ. 24, 803–821 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu H.Y., Sun H.: Enhanced near-cloak by FSH lining. J. Math. Pures Appl. 99, 17–42 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Liu H.Y., Zhou T.: Two dimensional invisibility cloaking by transformation optics. Discrete Contin. Dyn. Syst. 31, 525–543 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Menegatti G., Rondi L.: Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Probl. Imaging. 7, 1307–1329 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Milton G.W., Nicorovici N.-A.P.: On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. Lond. A. 462, 3027–3095 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Nédélec J.C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Springer, New York (2001)

    Book  Google Scholar 

  32. Norris A.N.: Acoustic cloaking theory. Proc. R. Soc. Lond. A. 464, 2411–2434 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Nguyen H.: Cloaking via change of variables for the Helmholtz equation in the whole space. Commun. Pure Appl. Math. 63, 1505–1524 (2010)

    Article  MATH  Google Scholar 

  34. Nguyen H., Vogelius M.S.: Full range scattering estimates and their application to cloaking. Arch. Ration. Mech. Anal. 203, 769–807 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pendry J.B., Schurig D., Smith D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Rondi L.: Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements. Indiana Univ. Math. J. 52, 1631–1662 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ruan Z., Yan M., Neff C.W., Qiu M.: Ideal cylyindrical cloak: Perfect but sensitive to tiny perturbations. Phy. Rev. Lett. 99, 113903 (2007)

    Article  ADS  Google Scholar 

  38. Uhlmann, G.: Visibility and invisibility. In: ICIAM 07–6th International Congress on Industrial and Applied Mathematics. Eur. Math. Soc., Zürich, pp. 381–408 (2009)

  39. Yan, M., Yan, W., Qiu, M.: Invisibility cloaking by coordinate transformation. In: Chapter 4 of Progress in Optics, vol. 52. Elsevier, Amsterdam, pp. 261–304 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunther Uhlmann.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, H., Rondi, L. et al. Regularized Transformation-Optics Cloaking for the Helmholtz Equation: From Partial Cloak to Full Cloak. Commun. Math. Phys. 335, 671–712 (2015). https://doi.org/10.1007/s00220-015-2318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2318-8

Keywords

Navigation