Skip to main content
Log in

Lieb-Thirring Bounds for Interacting Bose Gases

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study interacting Bose gases and prove lower bounds for the kinetic plus interaction energy of a many-body wave function in terms of its particle density. These general estimates are then applied to various types of interactions, including hard sphere (in 3D) and hard disk (in 2D) as well as a general class of homogeneous potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications, 9th-Printing (1970)

  2. Adams, R., Fournier, J.: Sobolev Spaces, 2nd ed., Academic Press, London (2003)

  3. Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  4. Beliaev, S.T.: Energy spectrum of a non-ideal Bose gas, Zh. Eksp. Teor. Fiz. 34, 433–446; Engl. Translation: Sov. Phys. JETP 7, 299–307 (1958)

  5. Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    Article  ADS  Google Scholar 

  6. Brueckner K.A., Sawada K.: Bose–Einstein gas with repulsive interactions: general theory. Phys. Rev. 106, 1117–1127 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Brueckner K.A., Sawada K.: Bose–Einstein gas with repulsive interactions: hard spheres at high density. Phys. Rev. 106, 1128–1135 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  ADS  Google Scholar 

  9. Davis K.B., Mewes M.-O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  ADS  Google Scholar 

  10. Dyson F.J.: Ground-state energy of a hard-sphere gas. Phys. Rev. 106, 20–26 (1957)

    Article  ADS  MATH  Google Scholar 

  11. Dyson F.J.: Stability of matter, In: Statistical Physics, Phase Transitions and Superfluidity, Brandeis University Summer Institute in Theoretical Physics 1966, pp. 179–239, Gordon and Breach Publishers, New York (1968)

  12. Dyson F.J., Lenard A.: Stability of matter. I. J. Math. Phys. 8, 423–434 (1967)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Dyson F.J., Lenard A.: Stability of matter. II. J. Math. Phys. 9, 698–711 (1968)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Fefferman C.: The uncertainty principle. Bull. AMS 9, 129–206 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Frank R.L., Seiringer R.: Lieb-Thirring inequality for a model of particles with point interactions. J. Math. Phys. 53, 095201 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Girardeau M., Arnowitt R.: Theory of Many-Boson systems: pair theory. Phys. Rev. 113, 755–761 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Guiliani A., Seiringer R.: The ground state energy of the weakly interacting Bose gas at high density. J. Stat. Phys. 135, 915–934 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Hoffmann-Ostenhof M., Hoffmann-Ostenhof T.: “Schrödinger inequalities” and asymptotic behaviour of the electron density of atoms and molecules. Phys. Rev. A 16, 1782–1785 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Laptev A., Tidblom J.: Many-particle hardy inequalities. J. Lond. Math. Soc. (2) 77, 99–114 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Huang K., Yang C.N.: Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev. 105, 767–775 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Hugenholtz N., Pines D.: Ground-state energy and excitation spectrum of a system of interacting bosons. Phys. Rev. 116, 489–506 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Lee T.D., Yang C.N.: Many-body problem in quantum statistical mechanics. III. Zero-temperature limit for dilute hard spheres. Phys. Rev. 117, 12–21 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Lee T.D., Huang K., Yang C.N.: Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135–1145 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Lenard, A.: Lectures on the coulomb stability problem. In: Statistical Mechanics And Mathematical Problems, Battelle Rencontres, Seattle, Wash., 1971, Lect. Notes Phys., Vol. 20, pp. 114–135 (1973)

  25. Lieb E.H., Liniger W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Lieb, E.H, Loss, M.: Analysis, 2nd edn. AMS, Providence (2001)

  27. Lieb E.H., Seiringer R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  28. Lieb E.H., Seiringer R., Yngvason J.: One-dimensional bosons in three-dimensional traps. Phys. Rev. Lett. 91, 150401 (2003)

    Article  ADS  Google Scholar 

  29. Lieb E.H., Seiringer R., Yngvason J.: One-dimensional behavior of dilute, trapped Bose gases. Commun. Math. Phys. 244, 347–393 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The mathematics of the Bose gas and its condensation. (Series: Oberwolfach Seminars, Vol. 34, Birkhäuser Verlag, 2005) (2005)

  31. Lieb, E.H., Thirring W.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35: 687–689. Errata ibid., 1116 (1975)

  32. Lieb, E.H., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics, pp. 269–303, Princeton University Press, Princeton (1976)

  33. Lieb E.H., Yngvason J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)

    Article  ADS  Google Scholar 

  34. Lieb, E.H., Yngvason, J.: The ground state energy of a dilute Bose gas. In: Weikardm, R., Weinstein, G. (eds.) Differential Equations and Mathematical Physics, University of Alabama, Birmingham, 1999, pp. 271–282, Amer. Math. Soc./Internat. Press (2000)

  35. Lieb E.H., Yngvason J.: The ground state energy of a dilute two-dimensional Bose gas. J. Stat. Phys. 103, 509–526 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lundholm, D., Nam, P.T., Portmann, F.: Fractional Hardy-Lieb-Thirring and related inequalities for interacting systems. [Epub ahead of print] (2015). http://arxiv.org/abs/1501.04570

  37. Lundholm D., Solovej J.P.: Hardy and Lieb-Thirring inequalities for anyons. Commun. Math. Phys. 322, 883–908 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Lundholm D., Solovej J.P.: Local exclusion and Lieb-Thirring inequalities for intermediate and fractional statistics. Ann. Henri Poincaré 15, 1061–1107 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Lundholm D., Solovej J.P.: Local exclusion principle for identical particles obeying intermediate and fractional statistics. Phys. Rev. A 88, 062106 (2013)

    Article  ADS  Google Scholar 

  40. Pitaevskii L., Stringari S.: Bose–Einstein Condensation. Oxford Science Publications, Oxford (2003)

    MATH  Google Scholar 

  41. Schnee K., Yngvason J.: Bosons in disc-shaped traps: from 3D to 2D. Commun. Math. Phys. 269, 659–691 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  42. Wu T.T.: Ground state of a Bose system of hard spheres. Phys. Rev. 115, 1390–1404 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Yau H.-T., Yin J.: The second order upper bound for the ground energy of a Bose gas. J. Stat. Phys. 136, 453–503 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lundholm.

Additional information

Communicated by M. Salmhofer

D.L. is supported by the Grant KAW 2010.0063 from the Knut and Alice Wallenberg Foundation and the Swedish Research Council Grant no. 2013-4734. F.P. was supported by the Swedish Research Council grant no. 2012-3864. J.P.S. is supported by the ERC AdvGrant Project no. 321029.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lundholm, D., Portmann, F. & Solovej, J.P. Lieb-Thirring Bounds for Interacting Bose Gases. Commun. Math. Phys. 335, 1019–1056 (2015). https://doi.org/10.1007/s00220-014-2278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2278-4

Keywords

Navigation