Skip to main content
Log in

Harmonic Maps to Buildings and Singular Perturbation Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The notion of a (uni)versal building associated with a point in the Hitchin base is introduced. The universal building is a building equipped with a harmonic map from the universal cover of the given Riemann surface that is initial among harmonic maps which induce the given cameral cover of the Riemann surface. The notion of a versal building is obtained by relaxing the uniqueness condition in the definition of an initial object. In the rank one case, the universal building is the leaf space of the quadratic differential defining the point in the Hitchin base. The main conjectures of this paper are: (1) a versal building always exists; (2) the asymptotics of the Riemann–Hilbert correspondence and the non-abelian Hodge correspondence are controlled by the harmonic map associated to any versal building; (3) spectral networks arise as inverse images of singularities of the versal building; and (4) versal buildings encode the data of a 3d Calabi-Yau category whose space of stability conditions has a connected component that contains the Hitchin base. The main theorem establishes the existence of the universal building, conjecture (3), as well as the Riemann–Hilbert part of conjecture (2), in the case of the rank two example introduced in the seminal work of Berk–Nevins–Roberts on higher order Stokes phenomena. It is also shown that the asymptotics of the Riemann–Hilbert correspondence are always controlled by a harmonic map to a certain building, which is constructed as the asymptotic cone of a symmetric space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramenko, P., Brown, K.S.: Buildings, Graduate Texts in Mathematics. Theory and applications, vol. 248. Springer, New York (2008)

  2. Aoki, T.: A fresh glimpse into the Stokes geometry of the Berk–Nevins–Roberts equation through a singular coordinate transformation, Technical report, Kyoto University, Research Institute for Mathematical Sciences (2005)

  3. Białynicki-Birula, A., Świecicka, J.: Complete quotients by algebraic torus actions, Group actions and vector fields (Vancouver, B.C., 1981), Lecture Notes in Math., vol. 956, pp. 10–22. Springer, Berlin (1982)

  4. Białynicki-Birula A., Świecicka J.: Generalized moment functions and orbit spaces. Am. J. Math. 109(2), 229–238 (1987)

    Article  MATH  Google Scholar 

  5. Berk, H.L., Nevins, W., Roberts, K.V.: New Stokes’ line in WKB theory. J. Math. Phys. 23(6), 988–1002 (1982)

  6. Bridgeland, T., Smith, I.: Quadratic differentials as stability conditions, to appear in Publ. Math. Paris

  7. Bennett, C.D., Schwer, P.N., Struyve, K.: On axiomatic definitions of non-discrete affine buildings, ArXiv e-prints (2010). arXiv:1003.3050 [math.MG]

  8. Comfort W.W.: Ultrafilters: some old and some new results. Bull. Am. Math. Soc. 83(4), 417–455 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. de Cataldo M.A., Hausel T., Migliorini L.: Topology of Hitchin systems and Hodge theory of character varieties: the case A 1. Ann. Math. (2) 175(3), 1329–1407 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Delabaere É., Dillinger H., Pham F.: Résurgence de Voros et périodes des courbes hyperelliptiques. Ann. Inst. Fourier (Grenoble) 43(1), 163–199 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Daskalopoulos G., Dostoglou S., Wentworth R.: Character varieties and harmonic maps to R-trees. Math. Res. Lett. 5(4), 523–533 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Daskalopoulos G., Dostoglou S., Wentworth R.: On the Morgan-Shalen compactification of the SL(2,C) character varieties of surface groups. Duke Math. J. 101(2), 189–207 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dimitrov, G., Haiden, F., Katzarkov, L., Kontsevich, M.: Dynamical systems and categories, ArXiv e-prints (2013), arXiv:1307.8418 [math.CT]

  14. Dyckerhoff, T., Kapranov, M.: Higher Segal spaces I, ArXiv e-prints (2012), arXiv:1212.3563 [math.AT]

  15. Dyckerhoff, T., Kapranov, M.: Triangulated surfaces in triangulated categories, ArXiv e-prints (2013), arXiv:1306.2545 [math.AG]

  16. Daskalopoulos, G., Mese, C.: On the singular set of harmonic maps into DM-complexes. Mem. Am. Math. Soc., (To appear)

  17. Donagi, R.: Spectral covers, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ., vol. 28, pp. 65–86. Cambridge Univ. Press, Cambridge (1995)

  18. Daskalopoulos, G.D., Wentworth, R.A.: Harmonic maps and Teichmüller theory, Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, pp. 33–109. Eur. Math. Soc., Zürich, (2007)

  19. Eyssidieux P., Katzarkov L., Pantev T., Ramachandran M.: Linear Shafarevich conjecture. Ann. Math. (2) 176(3), 1545–1581 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Everitt B.: A (very short) introduction to buildings. Expo. Math. 32(3), 221–247 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Farb B., Wolf M.: Harmonic splittings of surfaces. Topology 40(6), 1395–1414 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral Networks and Snakes, ArXiv e-prints (2012), arXiv:1209.0866 [hep-th]

  23. Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral Networks. Ann. Henri Poincaré 14(7), 1643–1731 (2013)

  24. Gaiotto D., Moore G.W., Neitzke A.: Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gromov, M.: Structures métriques pour les variétés riemanniennes. In: Lafontaine, J., Pansu, P. (eds.) Textes Mathématiques [Mathematical Texts], vol. 1, CEDIC, Paris (1981)

  26. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces, english ed., Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2007, Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates

  27. Gromov, M., Schoen, R.: Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Inst. Hautes études Sci. Publ. Math (76), 165–246 (1992)

  28. Goncharov, A.B., Shen, L.: Geometry of canonical bases and mirror symmetry, ArXiv e-prints (2013), arXiv:1309.5922 [math.RT]

  29. Hausel T.: Compactification of moduli of Higgs bundles. J. Reine Angew. Math. 503, 169–192 (1998)

    MATH  MathSciNet  Google Scholar 

  30. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI (2001). Corrected reprint of the 1978 original

  31. Honda, N.: Degenerate Stokes geometry and some geometric structure underlying a virtual turning point, Algebraic analysis and the exact WKB analysis for systems of differential equations, RIMS Kôkyûroku Bessatsu, B5, Res. Inst. Math. Sci., pp. 15–49. (RIMS), Kyoto, (2008)

  32. Katzarkov, L.: Factorization theorems for the representations of the fundamental groups of quasiprojective varieties and some applications, eprint arXiv:alg-geom/9402012/, 1994

  33. Katzarkov, L.: Factorization theorems for the representations of the fundamental groups of quasiprojective varieties and some applications, ProQuest LLC, Ann Arbor, MI, 1995, Thesis (Ph.D.)–University of Pennsylvania (1995)

  34. Kleiner B., Leeb B.: Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Inst. Hautes études Sci. Publ. Math. 1997(86), 115–197 (1998)

    MathSciNet  Google Scholar 

  35. Kapovich, M., Leeb, B., Millson, J.J.: The generalized triangle inequalities in symmetric spaces and buildings with applications to algebra, Mem. Am. Math. Soc. 192(896), viii+83 (2008)

  36. Kapovich M., Leeb B., Millson J.J.: Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity. J. Differ. Geom. 81(2), 297–354 (2009)

    MATH  MathSciNet  Google Scholar 

  37. Kapovich, M., Leeb, B., Millson, J.J.: Polygons in buildings and their refined side lengths. Geom. Funct. Anal. 19(4), 1081–1100 (2009)

  38. Komyo, A.: On compactifications of character varieties of $n$-punctured projective line, ArXiv e-prints (2013), arXiv:1307.7880 [math.AG]

  39. Katzarkov L., Ramachandran M.: On the universal coverings of algebraic surfaces. Ann. Sci. école Norm. Sup. 31(3–4), 525–535 (1998)

    MATH  MathSciNet  Google Scholar 

  40. Korevaar, N.J., Schoen, R.M.: Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom. 1(3-4), 561–659 (1993)

  41. Kontsevich, M., Soibelman, Y.: Motivic Donaldson-Thomas invariants: summary of results, Mirror symmetry and tropical geometry, Contemp. Math., vol. 527, pp. 55–89. Amer. Math. Soc., Providence, RI (2010)

  42. Kontsevich M., Soibelman Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants. Commun. Number Theory Phys. 5(2), 231–352 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kontsevich, M., Soibelman, Y.: Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and Mirror Symmetry, ArXiv e-prints (2013), arXiv:1303.3253 [math.AG]

  44. Le, I.: Higher Laminations and Affine Buildings, ArXiv e-prints (2012), arXiv:1209.0812 [math.RT]

  45. Leinster T.: Codensity and the ultrafilter monad. Theory Appl. Categ. 28(13), 332–370 (2013)

    MATH  MathSciNet  Google Scholar 

  46. Loftin J.: Flat metrics, cubic differentials and limits of projective holonomies. Geom. Dedicata 128, 97–106 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  47. Loray, F., Saito, M.-H., Simpson, C.T.: Foliations on the moduli space of rank two connections on the projective line minus four points, Geometric and differential Galois theory (Luminy 2010). In: Bertrand, D., Boalch, P.H., Couveignes, J.-M., Dèbes, P. (eds.) Séminaires et Congrès, vol.78, pp. 115–168. S.M.F., Paris (2013)

  48. Maubon, J.: Symmetric spaces of the non-compact type: differential geometry, Géométries à courbure négative ou nulle, groupes discrets et rigidités, Sémin. Congr., vol.18, pp. 1–38. Soc. Math. France, Paris (2009)

  49. Morgan J.W., Shalen P.B.: Valuations, trees, and degenerations of hyperbolic structures. I. Ann. Math. 120(2–3), 401–476 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  50. Parreau, A.: Dégénérescences de sous-groupes discrets de groupes de lie semi-simples et actions de groupes sur des immeubles affines, 2000, Thesis, Université Paris-Sud, Orsay (2000)

  51. Parreau A.: Compactification d’espaces de représentations de groupes de type fini. Math. Z. 272(1–2), 51–86 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  52. Ronan, M.: Lectures on buildings. University of Chicago Press, Chicago, IL, (2009). Updated and revised

  53. Rousseau, G.: Euclidean buildings, Géométries à courbure négative ou nulle, groupes discrets et rigidités. Sémin. Congr., vol.18, pp.77–116 (2009)

  54. Simpson, C.: Asymptotic behavior of monodromy, Lecture Notes in Mathematics, vol. 1502, Springer-Verlag, Berlin, 1991, Singularly perturbed differential equations on a Riemann surface

  55. Simpson, C.: Asymptotics for general connections at infinity, Astérisque. Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. II, (297), 189–231 (2004)

  56. Smith, I.: Quiver algebras as Fukaya categories, ArXiv e-prints (2013), arXiv:1309.0452 [math.SG]

  57. Stepanov D.A.: A remark on the dual complex of a resolution of singularities. Uspekhi Mat. Nauk 61(1(367), 185–186 (2006)

    Article  Google Scholar 

  58. Stepanov, D.A.: A note on resolution of rational and hypersurface singularities. Proc. Am. Math. Soc. 136(8), 2647–2654 (2008)

  59. Sun X.: Regularity of harmonic maps to trees. Am. J. Math. 125(4), 737–771 (2003)

    Article  MATH  Google Scholar 

  60. Thuillier A.: Géométrie toroï dale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels. Manuscr. Math. 123(4), 381–451 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  61. Voros A.: The return of the quartic oscillator: the complex WKB method. Ann. Inst. H. Poincaré Sect. A (N.S.) 39(3), 211–338 (1983)

    MATH  MathSciNet  Google Scholar 

  62. Wasow W.: Linear turning point theory Applied Mathematical Sciences, vol.54. Springer, New York (1985)

    Book  Google Scholar 

  63. Witten, E.: A new look at the path integral of quantum mechanics, Surveys in differential geometry. Volume XV. Perspectives in mathematics and physics, Surv. Differ. Geom., vol.15, pp. 345–419. Int. Press, Somerville, MA (2011)

  64. Wolf M.: Harmonic maps from surfaces to R-trees. Math. Z. 218(4), 577–593 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranav Pandit.

Additional information

Communicated by N. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katzarkov, L., Noll, A., Pandit, P. et al. Harmonic Maps to Buildings and Singular Perturbation Theory. Commun. Math. Phys. 336, 853–903 (2015). https://doi.org/10.1007/s00220-014-2276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2276-6

Keywords

Navigation