Skip to main content
Log in

Decay Results of Higher-Order Norms for the Navier–Stokes Flows in 3D Exterior Domains

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the nonstationary Stokes solution formula and the regularity theory of the steady Stokes equations, we establish the decay results (including the weighted cases) of higher-order spatial derivatives for the Navier–Stokes flows in 3D exterior domains, which is a long standing problem. The higher-order norm (weighted) decay results in this article are inspired by the work in Bae and Jin (Proc R Soc Edinburgh Sect A 135:461–477, 2005), Schonbek and Wiegner (Proc R Soc Edinburgh Sect A 126:677–685, 1996), respectively, which are considered in the whole space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bae H.: Temporal decays in L 1 and L for the Stokes flow. J. Differ. Equ. 222, 1–20 (2006)

    Article  ADS  MATH  Google Scholar 

  2. Bae H.: Temporal and spatial decays for the Stokes flow. J. Math. Fluid Mech. 10, 503–530 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bae H.: Analyticity and asymptotics for the Stokes solutions in a weighted space. J. Math. Anal. Appl. 269, 149–171 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bae H., Choe H.: A regularity criterion for the Navier–Stokes equations. Commun. Part. Differ. Equ. 32, 1173–1187 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bae H., Choe H.: Decay rate for the incompressible flows in half spaces. Math. Z. 238, 799–816 (2001)

    MATH  MathSciNet  Google Scholar 

  6. Bae H., Jin B.: Temporal and spatial decays for the Navier–Stokes equations. Proc. R. Soc. Edinburgh Sect. A 135, 461–477 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bae H., Jin B.: Asymptotic behavior for the the Navier–Stokes equations in 2D exterior domains. J. Funct. Anal. 240, 508–529 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bae H., Jin B.: Temporal and spatial decay rates of Navier–Stokes solutions in exterior domains. Bull. Korean Math. Soc. 44, 547–567 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bae H., Jin B.: Upper and lower bounds of temporal and spatial decays for the Navier–Stokes equations. J. Differ. Equ. 209, 365–391 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bae H., Jin B.: Asymptotic behavior of Stokes solutions in 2D exterior domains. J. Math. Fluid Mech. 10, 423–433 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Bae H., Roh J.: Optimal weighted estimates of the flows in exterior domains. Nonlinear Anal. 73, 1350–1363 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Borchers W., Miyakawa T.: Algebraic L 2 decay for Navier–Stokes flows in exterior domains. Acta Math. 165, 189–227 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Borchers, W., Miyakawa, T.: On some coercive estimates for the Stokes problem in unbounded domains. In: Heywood, J.G., Masuda, K., Rautmann, R., Solonnikov, V.A. (eds.) Navier–Stokes Equations: Theory and Numerical Methods, vol. 1530. Lecture Notes in Mathematics. Springer, Berlin (1992)

  14. Brandolese L.: Asymptotic behavior of the energy and pointwise estimates for solutions to the Navier–Stokes equations. Rev. Mat. Iberoamericana. 20, 223–256 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Brandolese L.: Space-time decay of Navier–Stokes flows invariant under rotations. Math. Ann. 329, 685–706 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Brandolese L.: Application of the realization of homogeneous Sobolev spaces to Navier–Stokes. SIAM J. Math. Anal. 37, 673–683 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Brandolese L., Vigneron F.: New asymptotic profiles of nonstationary solutions of the Navier–Stokes system. J. Math. Pures Appl. 88, 64–86 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure. Appl. Math. XXXV, 771–831 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  19. Caffarelli L., Vasseur A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Constantin P., Wu J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dong H., Du D.: The Navier–Stokes equations in the critical Lebesgue space. Commun. Math. Phys. 292, 811–827 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Dong H., Du D.: Partial regularity of solutions to the four-dimensional Navier–Stokes equations at the first blow-up time. Commun. Math. Phys. 273, 785–801 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Galdi G.: An introduction to the mathematical theory of the Navier–Stokes equations. Vol. I. Linearized steady problems. Springer, New York (1994)

    MATH  Google Scholar 

  24. Han P.: Decay rates for the incompressible Navier–Stokes flows in 3D exterior domains. J. Funct. Anal. 263, 3235–3269 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Han P.: Algebraic L 2 decay for weak solutions of a viscous Boussinesq system in exterior domains. J. Differ. Equ. 252, 6306–6323 (2012)

    Article  ADS  MATH  Google Scholar 

  26. He C., Miyakawa T.: Nonstationary Navier–Stokes flows in a two-dimensional exterior domain with rotational symmetries. Indiana Univ. Math. J. 55, 1483–1555 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. He C., Miyakawa T.: On L 1-summability and asymptotic profiles for smooth solutions to Navier–Stokes equations in a 3D exterior domain. Math. Z. 245, 387–417 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. He C., Miyakawa T.: On weighted-norm estimates for nonstationary incompressible Navier–Stokes flows in a 3D exterior domain. J. Differ. Equ. 246, 2355–2386 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. He C., Xin Z.: On the decay properties for solutions to nonstationary Navier–Stokes equations in R 3. Proc. R. Soc. Edinburgh Sect. A 131, 597–619 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Iskauriaza, L., Seregin, G., Shverak, V.: L 3,∞-solutions of Navier–Stokes equations and backward uniqueness. (Russian) Uspekhi Mat. Nauk. 58, 3–44 (2003); translation in Russian Math. Surveys. 58, 211–250 (2003)

  31. Leray J.: Sur le mouvement d’un liquide visqueux remplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lin F.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51, 241–257 (1998)

    Article  MATH  Google Scholar 

  33. Schonbek M.E.: L 2 decay for weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 88, 209–222 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Schonbek M.E.: Lower bounds of rates of decay for solutions to the Navier–Stokes equations. J. Am. Math. Soc. 4, 423–449 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schonbek M.E.: Asymptotic behavior of solutions to the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 41, 809–823 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  36. Schonbek M.E.: Large time behaviour of solutions to the Navier–Stokes equations in H m spaces. Commun. Partial Differ. Equ. 20, 103–117 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Schonbek M.E.: The Fourier Splitting Method. Advances in Geometric Analysis and Continuum Mechanics. Int. Press, Cambridge, Stanford (1995)

    Google Scholar 

  38. Schonbek M.E.: Total variation decay of solutions to the Navier–Stokes equations. Methods Appl. Anal. 7, 555–564 (2000)

    MATH  MathSciNet  Google Scholar 

  39. Schonbek M.E., Schonbek T.P.: On the boundedness and decay of moments of solutions to the Navier–Stokes equations. Adv. Differ. Equ. 5, 861–898 (2000)

    MATH  MathSciNet  Google Scholar 

  40. Schonbek M.E., Wiegner M.: On the decay of higher-order norms of the solutions of Navier–Stokes equations. Proc. R. Soc. Edinburgh Sect. A 126, 677–685 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. Seregin G.: Navier–Stokes equations: almost L 3,∞− case. J. Math. Fluid Mech. 9, 34–43 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Serrin J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 9, 187–195 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Vasseur A.: Regularity criterion for 3D Navier–Stokes equations in terms of the direction of the velocity. Appl. Math. 54, 47–52 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wu J.: Global regularity for a class of generalized magnetohydrodynamic equations. J. Math. Fluid Mech. 13, 295–305 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Wu J.: Regularity criteria for the generalized MHD equations. Commun. Partial Differ. Equ. 33, 285–306 (2008)

    Article  MATH  Google Scholar 

  46. Wu J.: Lower bounds for an integral involving fractional Laplacians and the generalized Navier–Stokes equations in Besov spaces. Commun. Math. Phys. 263, 803–831 (2006)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pigong Han.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, P. Decay Results of Higher-Order Norms for the Navier–Stokes Flows in 3D Exterior Domains. Commun. Math. Phys. 334, 397–432 (2015). https://doi.org/10.1007/s00220-014-2151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2151-5

Keywords

Navigation