Skip to main content
Log in

An Analog of the 2-Wasserstein Metric in Non-Commutative Probability Under Which the Fermionic Fokker–Planck Equation is Gradient Flow for the Entropy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \({\mathfrak{C}}\) denote the Clifford algebra over \({\mathbb{R}^n}\), which is the von Neumann algebra generated by n self-adjoint operators Q j , j = 1,…,n satisfying the canonical anticommutation relations, Q i Q j  + Q j Q i =  2δ ij I, and let τ denote the normalized trace on \({\mathfrak{C}}\). This algebra arises in quantum mechanics as the algebra of observables generated by n fermionic degrees of freedom. Let \({\mathfrak{P}}\) denote the set of all positive operators \({\rho\in\mathfrak{C}}\) such that τ(ρ) = 1; these are the non-commutative analogs of probability densities in the non-commutative probability space \({(\mathfrak{C},\tau)}\). The fermionic Fokker–Planck equation is a quantum-mechanical analog of the classical Fokker–Planck equation with which it has much in common, such as the same optimal hypercontractivity properties. In this paper we construct a Riemannian metric on \({\mathfrak{P}}\) that we show to be a natural analog of the classical 2-Wasserstein metric, and we show that, in analogy with the classical case, the fermionic Fokker–Planck equation is gradient flow in this metric for the relative entropy with respect to the ground state. We derive a number of consequences of this, such as a sharp Talagrand inequality for this metric, and we prove a number of results pertaining to this metric. Several open problems are raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. In: Lectures in Mathematics ETH Zürich. 2nd ed. Birkhäuser Verlag, Basel (2008)

  2. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)

  3. Benamou J.-D., Brenier Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Biane P., Voiculescu D.: A free probability analogue of the Wasserstein metric on the trace-state space. Geom. Funct. Anal. 11, 1125–1138 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bogoliubov N.N.: Phys. Abh. SU. 1, 229 (1962)

    Google Scholar 

  6. Carlen E.A.: Trace inequalities and quantum entropy: an introductory course. Entropy and the quantum. Contemp. Math. 529, 73–140 (2010)

    Article  MathSciNet  Google Scholar 

  7. Carlen E.A., Gangbo W.: Constrained steepest descent in the 2-Wasserstein metric. Arch. Ration. Mech. Anal. 172, 21–64 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carlen E.A., Gangbo W.: Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric. Ann. Math. 157(3), 1–40 (2003)

    Article  MathSciNet  Google Scholar 

  9. Carlen E.A., Lieb E.H.: Optimal hypercontractivity for Fermi Fields and related non-commutative integration inequalities. Commun. Math. Phys. 155, 27–46 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Carlen E.A., Lieb E.H.: Brascamp–Lieb inequalities for non-commutatative integration. Documenta Math. 13, 553–584 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Carrillo J.A., McCann R.J., Villani C.: Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179, 217–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chow, S.-N., Huang, W., Li, Y., Zhou, H.: Fokker–Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203(3), 969–1008 (2012)

  13. Daneri S., Savaré G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40(3), 1104–1122 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18(4), 335–383 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  15. Erbar M.: The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat. 46, 1–23 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Erbar M., Maas J.: Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206, 997–1038 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fang S., Shao J., Sturm K.-Th.: Wasserstein space over the Wiener space. Probab. Theory Relat. Fields 146, 535–565 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gigli, N., Kuwada, K., Ohta, S.-i.: Heat flow on Alexandrov spaces. Commun. Pure Appl. Math. 66(3), 307–331 (2013)

  19. Gross L.: Existence and uniqueness of physical ground states. J. Funct. Anal. 10, 52–109 (1972)

    Article  MATH  Google Scholar 

  20. Gross L.: Hypercontractivity and logarithmic Sobolev inequalities for the Clifford–Dirichlet form. Duke Math. J. 42, 383–396 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kubo R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lieb E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math. 11, 267–288 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  24. Maas J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261, 2250–2292 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mielke A.: A gradient structure for reaction–diffusion systems and for energy–drift–diffusion systems. Nonlinearity 24, 1329–1346 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Mielke, A.: Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Differ. Equ. 48(1–2), 1–31 (2013)

  28. Mori H.: Transport, collective motion, and Brownian motion. Progr. Theor. Phys. 33, 423–455 (1965)

    Article  ADS  MATH  Google Scholar 

  29. Nelson E.: The free Markoff field. J. Funct. Anal. 12, 211–227 (1973)

    Article  MATH  Google Scholar 

  30. Ohta S.-I., Sturm K.-Th.: Heat flow on Finsler manifolds. Commun. Pure Appl. Math. 62, 1386–1433 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Otto F., Westdickenberg M.: Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37(4), 1227–1255 (2005)

    Article  MathSciNet  Google Scholar 

  33. Otto F., Villani C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Segal I.E.: A non-commutative extension of abstract integration. Ann. Math. 57, 401–457 (1953)

    Article  MATH  Google Scholar 

  35. Segal I.E.: Tensor algebras over Hilbert spaces II. Ann. Math. 63, 160–175 (1956)

    Article  MATH  Google Scholar 

  36. Segal I.E.: Algebraic integration theory. Bull. Am. Math. Soc. 71, 419–489 (1965)

    Article  MATH  Google Scholar 

  37. Talagrand M.: Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6, 587–600 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Villani, C.: Topics in optimal transportation, vol. 58. In: Graduate Studies in Mathematics. American Mathematical Society, Providence (2003)

  39. Villani, C.: Optimal transport, old and new, vol. 338. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Carlen.

Additional information

Communicated by H.-T. Yau

E. A. Carlen’s work was partially supported by US National Science Foundation Grant DMS 0901632.

J. Maas’s work was partially supported by Rubicon subsidy 680-50-0901 of the Netherlands Organisation for Scientific Research (NWO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlen, E.A., Maas, J. An Analog of the 2-Wasserstein Metric in Non-Commutative Probability Under Which the Fermionic Fokker–Planck Equation is Gradient Flow for the Entropy. Commun. Math. Phys. 331, 887–926 (2014). https://doi.org/10.1007/s00220-014-2124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2124-8

Keywords

Navigation