Skip to main content
Log in

Asymptotic Statistics of Cycles in Surrogate-Spatial Permutations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose an extension of the Ewens measure on permutations by choosing the cycle weights to be asymptotically proportional to the degree of the symmetric group. This model is primarily motivated by a natural approximation to the so-called spatial random permutations recently studied by Betz and Ueltschi (hence the name “surrogate-spatial”), but it is of substantial interest in its own right. We show that under the suitable (thermodynamic) limit both measures have the similar critical behaviour of the cycle statistics characterized by the emergence of infinitely long cycles. Moreover, using a greater analytic tractability of the surrogate-spatial model, we obtain a number of new results about the asymptotic distribution of the cycle lengths (both small and large) in the full range of subcritical, critical, and supercritical domains. In particular, in the supercritical regime there is a parametric “phase transition” from the Poisson–Dirichlet limiting distribution of ordered cycles to the occurrence of a single giant cycle. Our techniques are based on the asymptotic analysis of the corresponding generating functions using Pólya’s Enumeration Theorem and complex variable methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arratia, R., Barbour, A.D., Tavaré, S.: Logarithmic Combinatorial Structures: a Probabilistic Approach. EMS Monographs in Mathematics. European Mathematical Society, Zürich (2003)

  2. Bennett G.: Probability inequalities for the sum of independent random variables. J. Am. Stat. Assoc. 57, 33–45 (1962)

    Article  MATH  Google Scholar 

  3. Betz V., Ueltschi D.: Spatial random permutations and infinite cycles. Commun. Math. Phys. 285, 469–501 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Betz V., Ueltschi D.: Critical temperature of dilute Bose gases. Phys. Rev. A 81, 023611 (2010)

    Article  ADS  Google Scholar 

  5. Betz V., Ueltschi D.: Spatial random permutations with small cycle weights. Probab. Theory Relat. Fields 149, 191–222 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Betz V., Ueltschi D.: Spatial random permutations and Poisson–Dirichlet law of cycle lengths. Electron. J. Probab. 16, 1173–1192 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Betz V., Ueltschi D., Velenik Y.: Random permutations with cycle weights. Ann. Appl. Probab. 21, 312–331 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bhattacharya R.N., Ranga Rao R.: Normal Approximation and Asymptotic Expansions, corrected printing. Robert E. Krieger Publishing Company, Malabar, FL (1986)

    Google Scholar 

  9. Bochner, S., Chandrasekharan, K.: Fourier Transforms. Annals of Mathematical Studies, vol. 19. Princeton University Press/Oxford University Press, Princeton/London (1949)

  10. de Bruijn N.G.: Asymptotic Methods in Analysis, 2nd edn. Bibliotheca Mathematica, vol. IV. North-Holland/Noordhoff, Amsterdam/Groningen (1961)

    Google Scholar 

  11. Ercolani, N.M., Jansen, A., Ueltschi, D.: Random partitions in statistical mechanics. http://arxiv.org/abs/1401.1442 (2014). Last accessed 17 Feb 2014

  12. Ercolani N.M., Ueltschi D.: Cycle structure of random permutations with cycle weights. Random Struct. Algorithms 44, 109–133 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ewens W.J.: The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  14. Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edn. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1971)

  15. Flajolet P., Sedgewick R.: Analytic Combinatorics. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  16. Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  17. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1952)

  18. Ibragimov I.A., Linnik Y.V.: Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen (1971)

    MATH  Google Scholar 

  19. Ishwaran H., Zarepour M.: Exact and approximate sum representations for the Dirichlet process. Can. J. Stat. 30, 269–283 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kingman J.F.C.: Random discrete distributions. J. R. Stat. Soc. Ser. B 37, 1–22 (1975)

    MATH  MathSciNet  Google Scholar 

  21. Kingman J.F.C.: The population structure associated with the Ewens sampling formula. Theor. Popul. Biol. 11, 274–283 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kingman J.F.C.: Poisson Processes. Oxford Studies in Probability, vol. 3. Clarendon Press/Oxford University Press, Oxford (1993)

    Google Scholar 

  23. Lewin L.: Polylogarithms and Associated Functions. North-Holland, New York (1981)

    MATH  Google Scholar 

  24. Macdonald I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Monographs. Oxford University Press, New York (1995)

    Google Scholar 

  25. Manstavičius E.: Mappings on decomposable combinatorial structures: analytic approach. Comb. Probab. Comput. 11, 61–78 (2002)

    MATH  Google Scholar 

  26. Maples, K., Nikeghbali, A., Zeindler, D.: On the number of cycles in a random permutation. Electron. Commun. Probab. 17(20), 1–13 (2012)

  27. Nagaev S.V.: Large deviations of sums of independent random variables. Ann. Probab. 7, 745–789 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nikeghbali A., Zeindler D.: The generalized weighted probability measure on the symmetric group and the asymptotic behavior of the cycles. Ann. Inst. H. Poincaré Probab. Stat. 49, 961–981 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Pólya, G.: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. (German) Acta Math. 68, 145–254 (1937) (English transl. in Pólya, G., Read, R.C. Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds, pp. 1–95. Springer, New York (1987))

  30. Tavaré S.: The birth process with immigration, and the genealogical structure of large populations. J. Math. Biol. 25, 161–168 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  31. Vershik, A.M., Shmidt, A.A.: Limit measures arising in the asymptotic theory of symmetric groups. I. (Russian) Teor. Veroyatnost. i Primenen. 22, 72–88 (1977) (English transl. Theory Probab. Appl. 22, 70–85 (1977))

  32. Watterson G.A.: The stationary distribution of the infinitely-many neutral alleles diffusion model. J. Appl. Probab. 13, 639–651 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Bogachev.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, L.V., Zeindler, D. Asymptotic Statistics of Cycles in Surrogate-Spatial Permutations. Commun. Math. Phys. 334, 39–116 (2015). https://doi.org/10.1007/s00220-014-2110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2110-1

Keywords

Navigation