Skip to main content
Log in

Bruhat Order in Full Symmetric Toda System

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we discuss some geometrical and topological properties of the full symmetric Toda system. We show by a direct inspection that the phase transition diagram for the full symmetric Toda system in dimensions n = 3, 4 coincides with the Hasse diagram of the Bruhat order of symmetric groups S 3 and S 4. The method we use is based on the existence of a vast collection of invariant subvarieties of the Toda flow in orthogonal groups. We show how one can extend it to the case of general n. The resulting theorem identifies the set of singular points of dim = n Toda flow with the elements of the permutation group S n , so that points will be connected by a trajectory, if and only if the corresponding elements are Bruhat comparable. We also show that the dimension of the submanifolds, spanned by the trajectories connecting two singular points, is equal to the length of the corresponding segment in the Hasse diagram. This is equivalent to the fact that the full symmetric Toda system is in fact a Morse–Smale system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flaschka H.: The Toda lattice. I. Existence of integrals. Phys. Rev. B 9(4), 1924–1925 (1974)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Toda M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22(2), 431–436 (1967)

    Article  ADS  Google Scholar 

  3. Toda M.: Wave propagation in anharmonic lattices. J. Phys. Soc. Jpn. 23(3), 501–506 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  4. Henon M.: Integrals of the Toda lattice. Phys. Rev. B9, 1921–1923 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  5. Flaschka H.: On the Toda lattice. II. Prog. Theor. Phys. 51(3), 703–716 (1974)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Moser, J.: Finitely many mass points on the line under the influence of an exponential potential—an integrable system. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Lecturer Notes in Physics, vol. 38, pp. 467–497. Springer, Berlin (1975)

  7. Deift P., Nanda T., Tomei C.: Ordinary differential equations and the symmetric eigenvalue problem. SIAM J. Numer. Anal. 20, 1–20 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Moser J.: Integrable Hamiltonian Systems and Spectral Theory. Lezioni Fermiane, Pisa (1981)

    MATH  Google Scholar 

  9. Kodama Y., McLaughlin K.T.-R.: Explicit integration of the full symmetric Toda hierarchy and the sorting property. Lett. Math. Phys. 37, 37–47 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Fre, P., Sorin, A.S.: The arrow of time and the Weyl group: all supergravity billiards are integrable. Nucl. Phys. B 815, 430 (2009). [ arXiv:0710.1059]

  11. Fre, P., Sorin, A.S.: Integrability of supergravity billiards and the generalized Toda lattice equation. Nucl. Phys. B 733, 334 (2006). [ hep-th/0510156]

  12. Arhangelskii A.A.: Completely integrable hamiltonian systems on a group of triangular matrices. Math. USSR Sb. 36(1), 127–134 (1980)

    Article  Google Scholar 

  13. Adler M.: On a trace functional for pseudo-differential operators and the symplectic structure of the Korteweg–de Vries equation. Invent. Math. 50, 219–248 (1979)

    Article  ADS  MATH  Google Scholar 

  14. Kostant B.: The solution to a generalized Toda lattice and representation theory. Adv. Math. 34, 195–338 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Symes W.W.: Systems of Toda type, inverse spectral problems, and representation theory. Invent. Math. 59(1), 13–51 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Deift P., Li L.C., Nanda T., Tomei C.: The Toda flow on a generic orbit is integrable. CPAM 39, 183–232 (1986)

    MATH  MathSciNet  Google Scholar 

  17. Chernyakov, Yu.B., Sorin, A.S.: Semi-invariants and Integrals of the Full Symmetric sl(n) Toda Lattice [ arXiv:1312.4555]

  18. De Mari F., Pedroni M.: Toda flows and real Hessenberg manifolds. J. Geom. Anal. 9(4), 607–625 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ercolani, N., Flaschka, H., Singer, S.: The geometry of the full Kostant–Toda lattice In: Integrable Systems. Progress in Mathematics, vol. 115, pp. 181–226. Birkhauser, Basel (1993)

  20. Bloch A.: Steepest descent, linear programming and gradient flow. Contemp. Math. AMS 114, 77–88 (1980)

    Article  MathSciNet  Google Scholar 

  21. Bloch A.M., Brockett R.W., Ratiu T.S.: A new formulation of the generalized Toda lattice equations and their fixed point analysis via the momentum map. Bull. Am. Math. Soc. (N.S.) 23(2), 477–485 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bloch A.M., Gekhtman M.: Hamiltonian and gradient structures in the Toda flows. J. Geom. Phys. 27, 230–248 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Fulton W.: Young Tableaux. Cambridge University Press, London (1997)

    MATH  Google Scholar 

  24. Ulfarsson, H., Woo, A.: Which Schubert varieties are local complete intersections? Proc. Lond. Math. Soc. 107(5), 1004–1052 (2013)

    Google Scholar 

  25. Bloch A.M., Brockett R.W., Ratiu T.S.: Completely integrable gradient flows. Commun. Math. Phys. 147, 57–74 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Billey, S., Lakshmibai, V.: Singular loci of Schubert varieties. Progress in Mathematics, vol. 182. Birkhauser, Boston (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Chernyakov.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyakov, Y.B., Sharygin, G.I. & Sorin, A.S. Bruhat Order in Full Symmetric Toda System. Commun. Math. Phys. 330, 367–399 (2014). https://doi.org/10.1007/s00220-014-2035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2035-8

Keywords

Navigation