Skip to main content
Log in

Quantized Abelian Principal Connections on Lorentzian Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a covariant functor from a category of Abelian principal bundles over globally hyperbolic spacetimes to a category of *-algebras that describes quantized principal connections. We work within an appropriate differential geometric setting by using the bundle of connections and we study the full gauge group, namely the group of vertical principal bundle automorphisms. Properties of our functor are investigated in detail and, similar to earlier works, it is found that due to topological obstructions the locality property of locally covariant quantum field theory is violated. Furthermore, we prove that, for Abelian structure groups containing a nontrivial compact factor, the gauge invariant Borchers-Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge equivalence classes of principal connections. We introduce a topological generalization of the concept of locally covariant quantum fields. As examples, we construct for the category of principal U(1)-bundles two natural transformations from singular homology functors to the quantum field theory functor that can be interpreted as the Chern class and the electric charge. In this case we also prove that the electric charges can be consistently set to zero, which yields another quantum field theory functor that satisfies all axioms of locally covariant quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams J.F.: Lectures on Lie groups. W. A. Benjamin, Inc., New York-Amsterdam (1969)

    MATH  Google Scholar 

  2. Atiyah M.F.: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85, 181–207 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  3. Atiyah M.: Topological quantum field theories. Inst. Hautes Etudes Sci. Publ. Math. 68, 175 (1989)

    Article  MathSciNet  Google Scholar 

  4. Baum, H.: Eichfeldtheorie: Eine Einführung in die Differentialgeometrie auf Faserbündeln. Springer, Berlin (2009)

  5. Bongaarts P.J.M.: Maxwell’s equations in axiomatic quantum field theory. 1. Field tensor and potentials. J. Math. Phys. 18, 1510 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  6. Brunetti, R., Duetsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541 (2009). [arXiv:0901.2038 [math-ph]]

  7. Benini, M., Dappiaggi, C., Hack, T.-P.: Quantum field theory on curved backgrounds—A Primer. Int. J. Mod. Phys. A 28, 1330023 (2013). [arXiv:1306.0527 [gr-qc]]

  8. Benini, M., Dappiaggi, C., Schenkel, A.: Quantum field theory on affine bundles. Ann. Henri Poincaré 15, 17–211(2014). [arXiv:1210.3457 [math-ph]]

  9. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). [math-ph/0112041]

    Google Scholar 

  10. Bär, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds. Springer Proc. Math. 17, 359 (2011). [arXiv:1104.1158 [math-ph]]

  11. Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorenzian manifolds and quantization. Zürich, Switzerland: Eur. Math. Soc. (2007). [arXiv:0806.1036 [math.DG]]

  12. Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic space-times. Commun. Math. Phys. 257, 43 (2005). [gr-qc/0401112]

    Google Scholar 

  13. Bott R., Tu L.W.: Differential forms in algebraic topology. Graduate Texts in Mathematics, 82, pp. xiv+331. Springer, New York, Berlin (1982)

    Book  Google Scholar 

  14. Dimock J.: Quantized electromagnetic field on a manifold. Rev. Math. Phys. 4, 223 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101, 265 (2012). [arXiv:1104.1374 [gr-qc]]

  16. Dappiaggi, C., Siemssen, D.: Hadamard states for the vector potential on asymptotically flat spacetimes. Rev. Math. Phys. 25, 1350002 (2013). [arXiv:1106.5575 [gr-qc]]

    Google Scholar 

  17. Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25, 1350008 (2013). [arXiv:1201.3295 [math-ph]]

  18. Fewster, C.J., Hunt, D.S.: Quantization of linearized gravity in cosmological vacuum spacetimes. Rev. Math. Phys. 25, 1330003 (2013). [arXiv:1203.0261 [math-ph]]

    Google Scholar 

  19. Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697 (2013). [arXiv:1110.5232 [math-ph]]

    Google Scholar 

  20. Fewster, C.J., Verch, R.: Dynamical locality and covariance: What makes a physical theory the same in all spacetimes? Ann. Henri Poincare 13, 1613 (2012). [arXiv:1106.4785 [math-ph]]

  21. Harder, G.: Lectures on algebraic geometry I. Sheaves, cohomology of sheaves, and applications to Riemann surfaces. Aspects of Mathematics, E 35, pp. xiv+299. Vieweg + Teubner Verlag, Wiesbaden (2011)

  22. Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008). [arXiv:0705.3340 [gr-qc]]

    Google Scholar 

  23. Hack, T.-P., Schenkel, A.: Linear bosonic and fermionic quantum gauge theories on curved spacetimes. Gen. Rel. Grav. 45, 877 (2013). [arXiv:1205.3484 [math-ph]]

  24. Kolář I., Michor P.W., Slovák J.: Natural operations in differential geometry. Springer, Berlin (1993)

    MATH  Google Scholar 

  25. Kobayashi S., Nomizu K.: Foundations of differential geometry Vol. I. Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York (1996)

    Google Scholar 

  26. Marolf, D.M.: The Generalized Peierls bracket. Ann. Phys. 236, 392 (1994). [hep-th/9308150]

    Google Scholar 

  27. Peierls R.E.: The Commutation laws of relativistic field theory. Proc. Roy. Soc. Lond. A 214, 143 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Pfenning, M.J.: Quantization of the Maxwell field in curved spacetimes of arbitrary dimension. Class. Quant. Grav. 26, 135017 (2009). [arXiv:0902.4887 [math-ph]]

  29. Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law (2012). To appear in Commun. Math. Phys. arXiv:1211.6420 [math-ph]

  30. Strocchi F.: Gauge Problem in Quantum Field Theory. Phys. Rev. 162, 1429 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  31. Strocchi F.: Gauge Problem in Quantum Field Theory. III. Quantization of Maxwell Equations and Weak Local Commutativity. Phys. Rev. D 2, 2334 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  32. Verch, R.: A spin statistics theorem for quantum fields on curved space-time manifolds in a generally covariant framework. Commun. Math. Phys. 223, 261 (2001). [math-ph/0102035]

    Google Scholar 

  33. Voisin C.: Hodge theory and complex algebraic geometry I. Cambridge Studies in Advanced Mathematics, 76, pp. x+322. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  34. Waldmann, S.: Geometric Wave Equations. arXiv:1208.4706 [math.DG]

  35. Zahn, J.: The renormalized locally covariant Dirac field. Rev. Math. Phys. 26, 130012 (2014). arXiv:1210.4031 [math-ph]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Dappiaggi.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benini, M., Dappiaggi, C. & Schenkel, A. Quantized Abelian Principal Connections on Lorentzian Manifolds. Commun. Math. Phys. 330, 123–152 (2014). https://doi.org/10.1007/s00220-014-1917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1917-0

Keywords

Navigation