Skip to main content
Log in

Stability of Asymptotics of Christoffel–Darboux Kernels

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the stability of convergence of the Christoffel–Darboux kernel, associated with a compactly supported measure, to the sine kernel, under perturbations of the Jacobi coefficients of the measure. We prove stability under variations of the boundary conditions and stability in a weak sense under 1 and random 2 diagonal perturbations. We also show that convergence to the sine kernel at x implies that μ({x}) = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Agmon S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. II. 2, 151–218 (1975)

    MATH  MathSciNet  Google Scholar 

  2. Avila A., Last Y., Simon B.: Bulk universality and clock spacing of zeros for ergodic Jacobi matrices with a.c. spectrum. Anal. PDE 3, 81–108 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Birman M.: Conditions for the existence of wave operators. Dokl. Akad. Nauk SSSR 143, 506–509 (1962)

    MathSciNet  Google Scholar 

  4. Breuer J.: Sine kernel asymptotics for a class of singular measures. J. Approx. Theory 163, 1478–1491 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Breuer J., Last Y.: Stability of spectral types for Jacobi matrices under decaying random perturbations. J. Funct. Anal. 245, 249–283 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Breuer J., Strahov E.: A universality theorem for ratios of random characteristic polynomials. J. Approx. Theory 164, 803–814 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Christ M., Kiselev A.: Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: Some optimal results. J. Amer. Math. Soc. 11, 771–797 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deift, P.: Orthogonal polynomials and random matrices: a riemann-hilbert approach. In: Courant Institute Lecture Notes, Vol. 3 New York: New York University Press, 1999

  9. Deift P., Killip R.: On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials. Commun. Math. Phys. 203, 341–347 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Denisov S.A.: On a conjecture by Y. Last. J. Approx. Theory 158, 194–213 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dombrowski J.: Quasitriangular matrices. Proc. Amer. Math. Soc. 69, 95–96 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. Enss V.: Asymptotic completeness for quantum mechanical potential scattering. Commun. Math. Phys. 61, 258–291 (1978)

    Article  MathSciNet  Google Scholar 

  13. Findley E.: Universality for regular measures satisfying Szegő’s condition. J. Approx. Theory 155, 136–154 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Freud G.: Orthogonal Polynomials. Pergamon Press, Oxford-New York (1971)

    Google Scholar 

  15. Gesztesy F., Simon B.: Rank one perturbations at infinite coupling. J. Funct. Anal. 128, 245–252 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kaluzhny U., Shamis M.: Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square-summable variation. Constr. Approx. 35, 89–105 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kato T.: Perturbation of continuous spectra by trace class operators. Proc. Japan Acad. 33, 260–264 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kato T.: Wave operators and similarity for some non-self-adjoint operators. Math. Ann. 162, 258–279 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  19. Killip R., Simon B.: Sum rules for Jacobi matrices and their applications to spectral theory. Ann. Math. 158, 253–321 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kiselev A., Last Y., Simon B.: Stability of singular spectral types under decaying perturbations. J. Funct. Anal. 198, 1–27 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kuijlaars, A.B.J.: Universality. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook on Random Matrix theory. Oxford: Oxford University Press, 2011

  22. Kuroda S.: Perturbations of continuous spectra by unbounded operators, I. J. Math. Soc. Japan 11, 247–262 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Kuroda S.: Perturbations of continuous spectra by unbounded operators, II. J. Math. Soc. Japan 12, 243–257 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  24. Last Y.: Destruction of absolutely continuous spectrum by perturbation potentials of bounded variation. Commun. Math. Phys. 274, 243–252 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Last Y., Simon B.: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrdinger operators. Invent. Math. 135, 329–367 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Last Y., Simon B.: Fine structure of the zeros of orthogonal polynomials, IV. A priori bounds and clock behavior. Commun. Pure Appl. Math. 61, 486–538 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Levin E., Lubinsky D.: Applications of universality limits to zeros and reproducing kernels of orthogonal polynomials. J. Approx. Theory 150, 69–95 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Levin E., Lubinsky D.: Universality Limits in the bulk for varying measures. Adv. Math. 219, 743–779 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lubinsky D.S.: A new approach to universality involving orthogonal polynomials. Annals Math. 170, 915–939 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lubinsky D.: Universality limits in the bulk for arbitrary measures on a compact set. J. Anal. Math. 106, 373–394 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lubinsky D.S.: Some recent methods for establishing universality limits. J. Nonlinear Anal. 71, e2750–e2765 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pearson D.B.: A generalization of Birman’s trace theorem. J. Funct. Anal. 28, 82–186 (1978)

    Article  Google Scholar 

  33. Rudin W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  34. Simon, B.: Spectral analysis of rank one perturbations and applications. In: Feldman, J., Froese, R., Rosen, L. (eds). Proc. Mathematical Quantum Theory, II: Schrdinger Operators. CRM Proc. Lecture Notes, Vol. 8, 1995, pp. 109–149

  35. Simon B.: Two extensions of Lubinsky’s universality theorem. J. Anal. Math. 105, 345–362 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Simon B.: Weak convergence of CD kernels and applications. Duke Math. J. 146, 305–330 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Simon, B.: The Christoffel–Darboux kernel. In: Perspectives in PDE, Harmonic Analysis and Applications. Proc. Sympos. Pure Math. Vol. 79, Providence, RI: American Mathematical Society, 2008, pp 295–335

  38. Simon, B.: Szegő’s Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials. M. B. Porter Lectures, Princeton, NJ: Princeton University Press, 2011

  39. Szegő, G.: Orthogonal Polynomials, 3rd edn. In: American Mathematical Society Colloquium Publications, Vol. 23, Providence, RI: American Mathematical Society, 1939, 1967

  40. Totik V.: Universality and fine zero spacing on general sets. Arkiv för Matematik 47, 361–391 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Breuer.

Additional information

Communicated by L. Erdos

J. Breuer, Y. Last: Supported in part by The Israel Science Foundation (Grant No. 1105/10).

B. Simon: Supported in part by NSF Grant No. DMS-0968856.

J. Breuer, Y. Last, B. Simon: Research supported in part by Grant No. 2010348 from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breuer, J., Last, Y. & Simon, B. Stability of Asymptotics of Christoffel–Darboux Kernels. Commun. Math. Phys. 330, 1155–1178 (2014). https://doi.org/10.1007/s00220-014-1913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1913-4

Keywords

Navigation