Skip to main content
Log in

The Anomaly Line Bundle of the Self-Dual Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this work, we determine explicitly the anomaly line bundle of the abelian self-dual field theory over the space of metrics modulo diffeomorphisms, including its torsion part. Inspired by the work of Belov and Moore, we propose a non-covariant action principle for a pair of Euclidean self-dual fields on a generic oriented Riemannian manifold. The corresponding path integral allows one to study the global properties of the partition function over the space of metrics modulo diffeomorphisms. We show that the anomaly bundle for a pair of self-dual fields differs from the determinant bundle of the Dirac operator coupled to chiral spinors by a flat bundle that is not trivial if the underlying manifold has middle-degree cohomology, and whose holonomies are determined explicitly. We briefly sketch the relevance of this result for the computation of the global gravitational anomaly of the self-dual field theory, that will appear in another paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez-Gaume L., Witten E.: Gravitational anomalies. Nucl. Phys. B234, 269 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  2. Witten E.: Global gravitational anomalies. Commun. Math. Phys. 100, 197 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Becker K., Becker M., Strominger A.: Fivebranes, membranes and nonperturbative string theory. Nucl. Phys. B456, 130–152 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  4. Witten E.: Non-perturbative superpotentials in string theory. Nucl. Phys. B474, 343–360 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. Dijkgraaf, R., Verlinde, E.P., Vonk, M.: On the partition sum of the NS five-brane. http://arXiv.org/abs/hep-th/0205281v1, 2002

  6. Tsimpis D.: Fivebrane instantons and Calabi-Yau fourfolds with flux. JHEP 03, 099 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Donagi, R., Wijnholt, M.: MSW Instantons. http://arXiv.org/abs/1005.5391v1 [hep-th], 2010

  8. Alexandrov S., Persson D., Pioline B.: Fivebrane instantons, topological wave functions and hypermultiplet moduli spaces. JHEP 03, 111 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bismut J.-M., Freed D.S.: The analysis of elliptic families. I. Metrics and connections on determinant bundles. Commun. Math. Phys. 106(1), 159–176 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bismut J.-M., Freed D.S.: The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem. Commun. Math. Phys. 107(1), 103–163 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Bastianelli F., van Nieuwenhuizen P.: Gravitational anomalies from the action for self-dual antisymmetric tensor fields in 4k+2 dimensions. Phys. Rev. Lett. 63, 728–730 (1989)

    Article  ADS  Google Scholar 

  12. Monnier S.: Geometric quantization and the metric dependence of the self-dual field theory. Commun. Math. Phys. 314(2), 305–328 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Sato, M.: The abelianization of the level 2 mapping class group. http://arXiv.org/abs/0804.4789v1 [math.GT], 2008

  14. Putman A.: The Picard group of the moduli space of curves with level structures. Duke Math. J. 161(4), 623–674 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Witten E.: Five-brane effective action in M-theory. J. Geom. Phys. 22, 103–133 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Henningson M., Nilsson B.E.W., Salomonson P.: Holomorphic factorization of correlation functions in (4k+2)-dimensional (2k)-form gauge theory. JHEP 09, 008 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  17. Dolan L., Nappi C.R.: A modular invariant partition function for the fivebrane. Nucl. Phys. B 530, 683–700 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Belov, D., Moore, G.W.: Holographic action for the self-dual field. http://arXiv.org/abs/hep-th/0605038v1 2006

  19. Hopkins M.J., Singer I.M.: Quadratic functions in geometry, topology, and M-theory. J. Differ. Geom. 70, 329 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Henneaux M., Teitelboim C.: Dynamics of chiral (selfdual) p forms. Phys. Lett. B 206, 650 (1988)

    Article  ADS  Google Scholar 

  21. McClain B., Yu F., Wu Y.: Covariant quantization of chiral bosons and OSp(1,1|2) symmetry. Nucl. Phys. B 343, 689–704 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  22. Pasti P., Sorokin D.P., Tonin M.: Duality symmetric actions with manifest space-time symmetries. Phys. Rev. D52, 4277–4281 (1995)

    ADS  MathSciNet  Google Scholar 

  23. Pasti P., Sorokin D.P., Tonin M.: On Lorentz invariant actions for chiral p-forms. Phys. Rev. D55, 6292–6298 (1997)

    ADS  MathSciNet  Google Scholar 

  24. Devecchi F.P., Henneaux M.: Covariant path integral for chiral p forms. Phys. Rev. D54, 1606–1613 (1996)

    ADS  MathSciNet  Google Scholar 

  25. Henningson M.: The partition bundle of type A N-1 (2, 0) theory. JHEP 04, 090 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. Cheeger, J., Simons, J.: Differential characters and geometric invariants. In: Geometry and Topology, Vol. 1167 of Lecture Notes in Mathematics, Berlin/Heidelberg: Springer, pp. 50–80

  27. Freed D.S., Moore G.W., Segal G.: Heisenberg groups and noncommutative fluxes. Ann. Phys. 322, 236–285 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Pestun V., Witten E.: The Hitchin functionals and the topological B-model at one loop. Lett. Math. Phys. 74, 21–51 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Schwarz A.S.: The partition function of a degenerate functional. Commun. Math. Phys. 67, 1–16 (1979)

    Article  ADS  MATH  Google Scholar 

  30. Branson, T.: Q-curvature and spectral invariants. In: Slovák, J., Čadek, M. (eds.) Proceedings of the 24th Winter School “Geometry and Physics”, Circolo Matematico di Palermo, 2005, pp. 11–55

  31. Seiberg N.: Notes on theories with 16 supercharges. Nucl. Phys. Proc. Suppl. 67, 158–171 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Birkenhake, C., Lange, H.: Complex abelian varieties. Vol. 302 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd ed., Berlin: Springer-Verlag, 2004

  33. Johnson D., Millson J.J.: Modular Lagrangians and the theta multiplier. Invent. Math. 100, 143–165 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Igusa J.-I.: On the graded ring of theta-constants. Amer. J. Math. 86, 219–246 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  35. Stark H.: On the transformation formula for the symplectic theta function and applications. J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 29, 1–12 (1982)

    MATH  Google Scholar 

  36. Styer R.: Prime determinant matrices and the symplectic theta function. Amer. J. Math. 106, 645–664 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hain, R.: Moduli of Riemann surfaces, transcendental aspects. In: School on Algebraic Geometry (Trieste, 1999), Vol. 1 of ICTP Lecture Notes, Trieste: Abdus Salam International Centre for Theoretical Physics, 2000, pp. 293–353

  38. Farb, B., Margalit, D.: A primer on mapping class groups. Princeton: Princeton University Press, 2011

  39. Debarre, O.: The Schottky problem: an update. In: Current topics in complex algebraic geometry, Vol. 28, Cambridge University Press: Mathematical Sciences Research Institute Publications, 1995, pp. 57–64

  40. Voisin, C.: Hodge Theory and Complex Geometry II. Cambridge: Cambridge University Press, 2003

  41. Kervaire M.A.: Non-parallelizability of the n-sphere for n > 7. Proc. Natl. Acad. Sci. USA 44(3), 280–283 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Monnier.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monnier, S. The Anomaly Line Bundle of the Self-Dual Field Theory. Commun. Math. Phys. 325, 41–72 (2014). https://doi.org/10.1007/s00220-013-1844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1844-5

Keywords

Navigation