Skip to main content
Log in

Weak Multiplicativity for Random Quantum Channels

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is known that random quantum channels exhibit significant violations of multiplicativity of maximum output p-norms for any p > 1. In this work, we show that a weaker variant of multiplicativity nevertheless holds for these channels. For any constant p > 1, given a random quantum channel \({\mathcal{N}}\) (i.e. a channel whose Stinespring representation corresponds to a random subspace S), we show that with high probability the maximum output p-norm of \({\mathcal{N}^{\otimes n}}\) decays exponentially with n. The proof is based on relaxing the maximum output ∞-norm of \({\mathcal{N}}\) to the operator norm of the partial transpose of the projector onto S, then calculating upper bounds on this quantity using ideas from random matrix theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrianov, N.: An analog of the Harer-Zagier formula for unicellular bicolored maps. Funct. Anal. Appl. 31(3), (1997)

  2. Amosov G., Holevo A.: On the multiplicativity conjecture for quantum channels. Theor. Probab. Appl. 47, 143146 (2002)

    Google Scholar 

  3. Amosov, G., Holevo, A., Werner, R.: On some additivity problems in quantum information theory. http://arxiv.org/abs/math-ph/0003002v2, 2000

  4. Aubrun, G.: Partial transposition of random states and non-centered semicircular distributions. http://arxiv.org/abs/1011.0275v3 [math.PR], 2012

  5. Aubrun G., Szarek S., Werner E.: Non-additivity of Renyi entropy and Dvoretzky’s theorem. J. Math. Phys. 51, 022102 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  6. Aubrun G., Szarek S., Werner E.: Hastings’ additivity counterexample via Dvoretzky’s theorem. Commun. Math. Phys. 305, 85–97 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Audenaert, K.: A digest on representation theory of the symmetric group, 2006. Available at http://personal.rhul.ac.uk/usah/080/QITNotes_files/Irreps_v06.pdf

  8. Banica, T., Nechita, I.: Asymptotic eigenvalue distributions of block-transposed Wishart matrices, http://arxiv.org/abs/1105.2556v2 [math.PR], 2011

  9. Biane P.: Some properties of crossings and partitions. Disc. Math. 175, 41–53 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christandl M., Schuch N., Winter A.: Entanglement of the antisymmetric state. Commun. Math. Phys. 311, 397–422 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Christandl M., Schuch N., Winter A.: Highly entangled states with almost no secrecy. Phys. Rev. Lett. 104, 240405 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. Collins B.: Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral and free probability. Int. Math. Res. Not. 17, 953–982 (2003)

    Article  Google Scholar 

  13. Collins B., Fukuda M., Nechita I.: Towards a state minimizing the output entropy of a tensor product of random quantum channels. J. Math. Phys. 53, 032203 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  14. Collins, B., González-Guillén, C., Pérez-García, D.: Matrix product states, random matrix theory and the principle of maximum entropy. http://arxiv.org/abs/1201.6324v1 [quant-ph], 2012

  15. Collins B., Nechita I.: Eigenvalue and entropy statistics for products of conjugate random quantum channels. Entropy 12, 1612–1631 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Collins B., Nechita I.: Random quantum channels I: Graphical calculus and the Bell state phenomenon. Commun. Math. Phys. 297(2), 345–370 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Collins B., Nechita I.: Gaussianization and eigenvalue statistics for random quantum channels (III). Ann. Appl. Prob. 21(3), 1136–1179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Collins B., Nechita I.: Random quantum channels II: Entanglement of random subspaces, Renyi entropy estimates and additivity problems. Adv. in Math. 226(2), 1181–1201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Collins B., Nechita I., Ye D.: The absolute positive partial transpose property for random induced states. Random Matrices. Th. Appl. 01, 1250002 (2012)

    Article  MathSciNet  Google Scholar 

  20. Collins B., Śniady P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264, 773–795 (2006)

    Article  ADS  MATH  Google Scholar 

  21. Cubitt T., Harrow A.W., Leung D., Montanaro A., Winter A.: Counterexamples to additivity of minimum output p-Renyi entropy for p close to 0. Commun. Math. Phys. 284, 281–290 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Grudka A., Horodecki M., Pankowski L.: Constructive counterexamples to additivity of minimum output Rényi entropy of quantum channels for all p > 2. J. Phys. A: Math. Gen. 43, 425304 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  23. Harrow, A.: Permutations are sort of orthogonal, 2012

  24. Harrow, A., Montanaro, A.: An efficient test for product states, with applications to quantum Merlin-Arthur games. In: Proc. 51st Annual Symp. Foundations of Computer Science, 2010, Piscatauay, NJ: IEEE, pp. 633–642, http://arxiv.org/abs/1001.0017v6 [quant-ph], 2012, Final version to be published

  25. Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nature Physics 5, 255 (2009)

    Article  ADS  Google Scholar 

  26. Hayden, P.: The maximal p-norm multiplicativity conjecture is false. http://arxiv.org/abs/0707.3291v1 [quant-ph], 2007, latex combined with another preprint and published in Commun. Math. Phys. 284, 263–270 (2008), ref [27]

    Google Scholar 

  27. Hayden P., Winter A.: Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1. Commun. Math. Phys. 284(1), 263–280 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Kobayashi, H., Matsumoto, K., Yamakami, T.: Quantum Merlin-Arthur proof systems: are multiple Merlins more helpful to Arthur? In: Proc. ISAAC ’03, Berlin-Heidelberg-New York: Springer, 2003, pp. 189–198

  29. Matsumoto, K.: Some new results and applications of additivity problem of quantum channel. Poster at QIP’05 conference, 2005

  30. Matsumoto, S., Novak, J.: Unitary matrix integrals, primitive factorizations, and Jucys-Murphy elements. In: Discrete Math. Theor. Comput. Sci., FPSAC 2010, Nancy. Disc. Math. Theor. Sci., 2010, pp. 403–412

  31. Matsumoto, S., Novak, J.: Jucys-Murphy elements and unitary matrix integrals. To appear in International Mathematics Research Notices, available at http://arxiv.org/abs/0905.1992v3 [math. Co], 2012

  32. Nica, A., Speicher, R.: Lectures on the combinatorics of free probability. Volume 335 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 2006

  33. Novak J.: Jucys-Murphy elements and the unitary Weingarten function. Banach Center Publ. 89, 231–235 (2010)

    Article  Google Scholar 

  34. Shor P.W.: Equivalence of additivity questions in quantum information theory. Commun. Math. Phys. 246(3), 453–472 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Werner, R., Holevo, A.: Counterexample to an additivity conjecture for output purity of quantum channels. http://arxiv.org/abs/quant-ph/0203003v1, 2002

  36. Winter, A.: The maximum output p-norm of quantum channels is not multiplicative for any p > 2. http://arxiv.org/abs/0707.0402v3 [quant-ph], 2008, later included in ref. [27]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley Montanaro.

Additional information

Communicated by M. B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montanaro, A. Weak Multiplicativity for Random Quantum Channels. Commun. Math. Phys. 319, 535–555 (2013). https://doi.org/10.1007/s00220-013-1680-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1680-7

Keywords

Navigation