Skip to main content
Log in

The Spectrum of the Cubic Oscillator

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the simplicity and analyticity of the eigenvalues of the cubic oscillator Hamiltonian,

$$\begin{array}{ll}H(\beta)=-\frac{d^2}{dx^2}+x^2+i\sqrt{\beta}x^3\end{array}$$

, for β in the cut plane \({\mathcal{C}_c:=\mathcal{C}\backslash \mathcal{R}_-}\). Moreover, we prove that the spectrum consists of the perturbative eigenvalues {E n (β)} n ≥ 0 labeled by the constant number n of nodes of the corresponding eigenfunctions. In addition, for all \({\beta \in \mathcal{C}_c, E_n(\beta)}\) can be computed as the Stieltjes-Padé sum of its perturbation series at β = 0. This also gives an alternative proof of the fact that the spectrum of H(β) is real when β is a positive number. This way, the main results on the repulsive PT-symmetric and on the attractive quartic oscillators are extended to the cubic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez G.: Bender-Wu branch points in the cubic oscillator. J. Phys. A 28(16), 4589–4598 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bender C.M., Boettcher S.: Real spectra in non-hermitian Hamiltonian having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bender C.M., Weniger E.J.: Numerical evidence that the perturbation expansion for a non-Hermitian PT-symmetric Hamiltonian is Stieltjes. J. Math. Phys. 42(5), 2167–2183 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Buslaev V., Grecchi V.: Equivalence of unstable anharmonic oscillators and double wells. J. Phys. A Math. Gen. 26, 5541–5549 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Caliceti E.: Distributional Borel summability of odd anharmonic oscillators. J. Phys. A: Math. Gen. 33, 3753–3770 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Caliceti E., Graffi S., Maioli M.: Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys. 75, 51 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Caliceti E., Maioli M.: Odd anharmonic oscillators and shape resonances. Ann. Inst. Henri Poincaré XXXVIII(2), 175–186 (1983)

    MathSciNet  Google Scholar 

  8. Davydov A.: Quantum Mechanics. Pergamon Press, London (1965)

    Google Scholar 

  9. Delabaere E., Pham F.: Eigenvalues of complex Hamitonians with PT symmetry I. Phys. Lett. A. 250, 25 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  10. Delabaere E., Pham F.: Eigenvalues of complex Hamitonians with PT symmetry II. Phys. Lett. A. 250, 29 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  11. Delabaere E., Trinh D.T.: Spectral analysis of the complex cubic oscillator. J. Phys. A: Math. Gen. 33, 8771–8796 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Dorey P., Dunning C., Tateo R.: Spectral equivalence, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics. J. Phys. A 34(28), 5679–5704 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Eremenko A., Gabrielov A.: Analytic continuation of eigenvalues of a quartic oscillator. Commun. Math. Phys. 287(2), 431–457 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Eremenko A., Gabrielov A., Shapiro B.: High energy eigenfunctions of one-dimensional Schrödinger operators with polynomial potential. Comput. Methods Funct. Theory 8, 513–529 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Grecchi V., Maioli M., Martinez A.: Padé summability for the cubic oscillator. J. Phys. A: Math. Theor. 42, 425208 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. Grecchi V., Maioli M., Martinez A.: The top resonances of the cubic oscillator. J. Phys. A: Math. Theor. 43, 474027 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  17. Harrell E.M. II, Simon B.: The mathematical theory of resonances whose widths are exponentially small. Duke Math. 47(4), 845–902 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kato, T.: Perturbation Theory for Linear Operators. Berlin-Heidelberg-Newyork: Springer-Verlag, 1976

  19. Loeffel J.-J., Martin A., Simon B., Wightman A.: Padé approximants and the anharmonic oscillator. Phys. Lett. B 30, 656–658 (1969)

    Article  ADS  Google Scholar 

  20. Loeffel, J.-J., Martin A.: Propriétés analytiques des niveaux de l’oscillateur anharmonique et convergence des approximants de Padé. Proceedings of R.C.P. n. 25, Strasbourg, 1970

  21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. II. New-York: Academic Press, 1975

  22. Shin K.C.: On the reality of the eigenvalues for a class of PT-symmetric operators. Commun. Math. Phys. 229, 543–564 (2002)

    Article  ADS  MATH  Google Scholar 

  23. Sibuya, Y.: Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient. Amsterdam: North-Holland, 1975

  24. Simon B.: Coupling constant analyticity for the anharmonic oscillator. Ann of Phys. 58, 76–136 (1970)

    Article  ADS  Google Scholar 

  25. Stieltjes, T.J.: Recherche sur les fractions continues. Ann. Fac. Sci. Univ. Toulouse 1re série, tome 8, no. 4, J1–J22 (1894)

  26. Trinh, D.T.: Asymptotique et analyse spectrale de l’oscillateur cubique, PhD Thesis 2002, Nice (France)

  27. Voros A.: The return of the quartic oscillator. Ann. Inst. Henri Poincaré, Section A XXXIX(3), 211–338 (1983)

    MathSciNet  Google Scholar 

  28. Wall, H.S.: Analytic Theory of Continued Fractions. Princeton, NJ: D. Van Nostrand Company, Inc., (1948)

  29. Zinn-Justin, J., Jentschura, U.D.: Imaginary cubic perturbation: numerical and analytic study. J. Phys. A: Math. Theor. 43, 425301 (2010) (29pp)

    Google Scholar 

  30. Zinn-Justin J., Jentschura U.D.: Order-dependent mappings: Strong-coupling behavior from weak-coupling expansions in non-Hermitian theories. J. Math. Phys. 51, 072106 (2010)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Martinez.

Additional information

Communicated by B. Simon

Partly supported by Università di Bologna, Funds for Selected Research Topics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grecchi, V., Martinez, A. The Spectrum of the Cubic Oscillator. Commun. Math. Phys. 319, 479–500 (2013). https://doi.org/10.1007/s00220-012-1559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1559-z

Keywords

Navigation