Skip to main content
Log in

An Algorithm for the Computation of Eigenvalues, Spectral Zeta Functions and Zeta-Determinants on Hyperbolic Surfaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a rigorous scheme that makes it possible to compute eigenvalues of the Laplace operator on hyperbolic surfaces within a given precision. The method is based on an adaptation of the method of particular solutions to the case of locally symmetric spaces and on explicit estimates for the approximation of eigenfunctions on hyperbolic surfaces by certain basis functions. It can be applied to check whether or not there is an eigenvalue in an ε-neighborhood of a given number λ > 0. This makes it possible to find all the eigenvalues in a specified interval, up to a given precision with rigorous error estimates. The method converges exponentially fast with the number of basis functions used. Combining the knowledge of the eigenvalues with the Selberg trace formula we are able to compute values and derivatives of the spectral zeta function again with error bounds. As an example we calculate the spectral determinant and the Casimir energy of the Bolza surface and other surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigon-Dupuy A., Buser P., Cibils M., Kuenzle A.F., Steiner F.: Hyperbolic octagons and Teichmueller space in genus 2. J. Math. Phys. 46, 4901–4925 (2005)

    Article  Google Scholar 

  2. Aurich R., Sieber M., Steiner F.: Quantum Chaos of the Hadamard-Gutzwiller Model. Phys. Rev. Lett. 61, 483–487 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  3. Aurich R., Steiner F.: On the periodic orbits of a strongly chaotic system. Phys. D 32(3), 451–460 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aurich R., Steiner F.: Periodic-orbit sum rules for the Hadamard-Gutzwiller model. Physica D 39, 169–193 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Aurich R., Steiner F.: From classical periodic orbits to the quantization of chaos. Proc. R. Soc. London A 437, 693–714 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Aurich R., Steiner F.: Statistical properties of highly excited quantum eigenstates of a strongly chaotic system. Phys. D 64(1–3), 185–214 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barnett A.H.: Perturbative analysis of the method of particular solutions for improved inclusion of high-lying Dirichlet eigenvalues. SIAM J. Num. Anal. 47(3), 1952–1970 (2009)

    Article  MATH  Google Scholar 

  8. Barnett A.H., Betcke T.: An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons. SIAM J. Sci. Comput. 32(3), 1417–1441 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barnett A.H., Hassell A.: Boundary quasi-orthogonality and sharp inclusion bounds for large Dirichlet eigenvalues. SIAM J. Num. Anal. 49(3), 1046–1063 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Betcke T.: A GSVD formulation of a domain decomposition method for planar eigenvalue problems. IMA J. Num. Anal. 27(3), 451–478 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borthwick, D.: Sharp geometric upper bounds on resonances for surfaces with hyperbolic ends. Avilable at http://www.mathcs.emory.edu/~davidb/sharpsurf.pdf, 2010

  12. Buser P., Silhol R.: Some remarks on the uniformizing function in genus 2. Geom. Dedicata 115, 121–133 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Booker, A.R., Strömbergsson, A., Venkatesh, A.: Effective computation of Maass cusp forms. Int. Math. Res. Not. 2006, Art. ID 71281, 1–34 (2006)

    Google Scholar 

  14. Betcke T., Trefethen L.N.: Reviving the method of particular solutions. SIAM Review 47(3), 469–491 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Buser, P.: Geometry and spectra of compact Riemann surfaces. Boston, MA: Birkhäuser, Boston, 1992

  16. Fox L., Henrici P., Moler C.B.: Approximations and bounds for eigenvalues of elliptic operators. SIAM J. Numer. Anal. 4, 89–102 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Fried D.: Analytic torsion and closed geodesics on hyperbolic manifolds. Invent. Math. 84(3), 523–540 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Golub, G.H., Van Loan, C.F.: Matrix computations. Johns Hopkins Studies in the Mathematical Sciences, Third Edition, Baltimore, MD: Johns Hopkins University Press, 1996

  19. Hejhal D.A.: Eigenvalues of the Laplacian for Hecke triangle groups. Mem. Amer. Math. Soc. 97(469), vi+165 (1992)

    MathSciNet  Google Scholar 

  20. Hejhal, D.A.: On eigenfunctions of the Laplacian for Hecke triangle groups. In: Emerging Applications of Number Theory, D. Hejhal, J. Friedman, M. Gutzwiller, and A. Odlyzko, eds., Berlin-Heidleberg-NewYork: Springer-Verlag, 1999, pp. 291–315

  21. Hindmarsh, A.C.: ODEPACK, a systematized collection of ODE solvers, in scientific computing. R. S. Stepleman et al. (eds.) Amsterdam: North-Holland, 1983, pp. 55–64

  22. Iwaniec, H.: Spectral methods of automorphic forms. Second ed., Graduate Studies in Mathematics, Vol. 53, Providence, RI: American Mathematical Society, 2002

  23. Jenni F.: Über den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispielen kompakter Riemannscher Flächen. Comment. Math. Helv. 59(2), 193–203 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jakobson, D., Levitin, M., Nadirashvili, N., Nigam, N., Polterovich, I.: How large can the first eigenvalue be on a surface of genus two? Int. Math. Res. Not. no. 63, 3967–3985 (2005)

  25. Klein C., Kokotov A., Korotkin D.: Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces. Math. Z. 261(1), 73–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marklof, J.: Selberg’s trace formula: An Introduction. In: Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology, eds. J. Bolte, F. Steiner, Cambridge: Cambridge University Press, 2011, pp. 83-119

  27. Moler C.B., Payne L.E.: Bounds for eigenvalues and eigenvectors of symmetric operators. SIAM J. Num. Anal. 5(1), 64–70 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Ninnemann H.: Gutzwiller’s octagon and the triangular billiard t*(2, 3, 8) as models for the quantization of chaotic systems by Selberg’s trace formula. Int. J. Mod. Phys. B 9, 1647–1753 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  29. Petzold L.R.: Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. Siam J. Sci. Stat. Comput. 4 4, 136–148 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pollicott M., Rocha A.C.: A remarkable formula for the determinant of the Laplacian. Invent. Math. 130(2), 399–414 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Osgood B., Phillips R., Sarnak P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80(1), 148–211 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Phillips, G.M., Taylor, P.J.: Theory and applications of numerical analysis, Second. ed., London: Academic Press Ltd., 1996

  33. Safarov Yu.: Fourier Tauberian theorems and applications. J. Funct. Anal. 185(1), 111–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schmutz P.: Riemann surfaces with shortest geodesic of maximal length. Geom. Funct. Anal. 3(6), 564–631 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schmutz P.: Systoles on Riemann surfaces. Manus. Math. 85(3-4), 429–447 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Steiner F.: On Selberg’s zeta function for compact Riemann surfaces. Phys. Lett. B 188(4), 447–454 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  37. Taylor, M.E.: Partial differential equations. I. Applied Mathematical Sciences, 115, Berlin, Heidleberg-NewYork: Springer-Verlag, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Strohmaier.

Additional information

Communicated by S. Zelditch

This work was supported by the Leverhulm grant F/00 261/Z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strohmaier, A., Uski, V. An Algorithm for the Computation of Eigenvalues, Spectral Zeta Functions and Zeta-Determinants on Hyperbolic Surfaces. Commun. Math. Phys. 317, 827–869 (2013). https://doi.org/10.1007/s00220-012-1557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1557-1

Keywords

Navigation