Skip to main content
Log in

On Stochastic Sea of the Standard Map

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Consider a generic one-parameter unfolding of a homoclinic tangency of an area preserving surface diffeomorphism. We show that for many parameters (residual subset in an open set approaching the critical value) the corresponding diffeomorphism has a transitive invariant set Ω of full Hausdorff dimension. The set Ω is a topological limit of hyperbolic sets and is accumulated by elliptic islands.

As an application we prove that a stochastic sea of the standard map has full Hausdorff dimension for sufficiently large topologically generic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnaud M.-C., Bonatti C., Crovisier S.: Dynamiques symplectiques génériques. Erg. Th. Dynam. Syst. 25(5), 1401–1436 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alexeyev, V.: Sur l’allure finale du mouvement dans le problme des trois corps. (French) Actes du Congrs International des Mathmaticiens (Nice, 1970), Tome 2. Paris: Gauthier-Villars, 1971, pp. 893–907

  3. Anosov, D.V.: Extension of 0-dimensional hyperbolic sets to locally maximal ones. Sb. Math. 201(7), p. 935 (2010)

    Google Scholar 

  4. Afraimovich V., Shilnikov L.: On critical sets of Morse-Smale systems. Trans. Moscow Math. Soc. 28, 179–212 (1973)

    Google Scholar 

  5. Bloor K., Luzzatto S.: Some remarks on the geometry of the Standard Map. Int. J. Bifurcation and Chaos 19, 2213–2232 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Bonatti C., Crovisier S.: Récurrence et généricité. Invent. Math. 158(1), 33–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bunimovich L.: Mushrooms and other billiards with divided phase space. Chaos 11, 802–808 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Brännström, N., Gelfreich, V.: Asymptotic Series for the Splitting of Separatrices near a Hamiltonian Bifurcation. http://arXiv.org/abs/0806.2403v1 [math.DS], 2008

  9. Cantat S., Bers Henon: Painleve and Schrödinger. Duke Math. J. 149(3), 411–460 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chernov V.: On separatrix splitting of some quadratic area preserving maps of the plane. Reg. Chaotic Dyn. 3(1), 49–65 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chirikov B.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  12. Dankowicz H., Holmes P.: The existence of transverse homoclinic points in the Sitnikov problem. J. Diff. Eqs. 116(2), 468–483 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Donnay V.: Geodesic flow on the two-sphere I. Positive measure entropy. Ergod. Th. Dynam. Syst. 8, 531–553 (1988)

    MATH  MathSciNet  Google Scholar 

  14. Downarowicz T., Newhouse S.: Symbolic extensions and smooth dynamical systems. Invent. Math. 160(3), 453–499 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Duarte P.: Plenty of elliptic islands for the standard family of area preserving maps. Ann. Inst. H. Poincare Anal. Non Lineaire 11(4), 359–409 (1994)

    MATH  MathSciNet  Google Scholar 

  16. Duarte P.: Abundance of elliptic isles at conservative bifurcations. Dyn. and Stability of Syst. 14(4), 339–356 (1994)

    Article  MathSciNet  Google Scholar 

  17. Duarte P.: Persistent homoclinic tangencies for conservative maps near the identity. Ergod.Th & Dynam. Syst. 20, 393–438 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Duarte P.: Elliptic Isles in Families of Area Preserving Maps. Ergod.Th & Dynam. Syst. 28, 1781–1813 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fontich E., Simo C.: The splitting of separatrices for analitic diffeomorphisms. Erg. Th. and Dyn. Syst. 10, 295–318 (1990)

    MATH  MathSciNet  Google Scholar 

  20. Fontich E., Simo C.: Invariant manifolds for near identity differentiable maps and splitting of separatrices. Erg. Th. and Dyn. Syst. 10, 319–346 (1990)

    MATH  MathSciNet  Google Scholar 

  21. Garcia, A., Perez-Chavela, E.: Heteroclinic phenomena in the Sitnikov problem. In: Hamiltonian systems and celestial mechanics (Patzcuaro, 1998). World Sci. Monogr. Ser. Math. 6. River Edge, NJ: World Sci. Publ., 2000, pp. 174–185

  22. Gelfreich V., Lazutkin V.: Splitting of separetrices: perturbation theory and exponential smallness. Russ. Math. Surv. 56(3), 499–558 (2001)

    Article  MathSciNet  Google Scholar 

  23. Gelfreich V.: Splitting of a small separatrix loop near the saddle-center bifurcation in area-preserving maps. Physica D 136(3-4), 266–279 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Gelfreich V.: A proof of the exponentially small transversality of the separatrices for the standard map. CMP 201, 155–216 (1999)

    MATH  MathSciNet  Google Scholar 

  25. Gelfreich V.: Conjugation to a shift and the splitting of invariant manifolds. Appl. Math. 24(2), 127–140 (1996)

    MATH  MathSciNet  Google Scholar 

  26. Gelfreich V., Sauzin D.: Borel summation amd splitting of separatrices for the Henon map. Ann.Inst.Fourier, Grenoble 51(2), 513–567 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gelfreich V., Turaev D.: Universal dynamics in a neighborhood of a generic elliptic periodic point. Regul. Chaotic Dyn. 15(2-3), 159–164 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Gerber, M.: Pseudo-Anosov maps and Wojtkowski’s cone methods. In: Partially hyperbolic dynamics, laminations, and Teichmüller flow. Fields Inst. Commun., 51. Providence, RI: Amer. Math. Soc., 2007, pp. 307–327

  29. Gerber, M.: Conditional stability and real analytic pseudo-Anosov maps. Mem. Amer. Math. Soc. 54 (321), (1985)

  30. Gonchenko, S., Shilnikov, L.: On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 300 (2003); Teor. Predst. Din. Sist. Spets., Vyp. 8, pp. 155–166, 288–289; translation in J. Math. Sci. (N. Y.) 128(2), 2767–2773, (2005)

  31. Gonchenko S., Shilnikov L.: Invariants of Ω-conjugacy of diffeomorphisms with a non-generic homoclinic tragectory. Ukr. Math. J. 28, 134–140 (1990)

    Article  MathSciNet  Google Scholar 

  32. Gonchenko S., Turaev D., Shilnikov L.: Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps. Nonlinearity 20(2), 241–275 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Gonchenko S., Turaev D., Shilnikov L.: On the existence of Newhouse regions in a neighborhood of systems with a structurally unstable homoclinic Poincaré curve (the multidimensional case). Russ. Acad. Sci. Dokl. Math. 47(2), 268–273 (1993)

    MathSciNet  Google Scholar 

  34. Gorodetski A., Kaloshin V.: Conservative homoclinic bifurcations and some applications. Steklov Inst. Proc. 267, 76–90 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Gorodetski A., Kaloshin V.: How often surface diffeomorphisms have infinitely many sinks and hyperbolicity of periodic points near a homoclinic tangency. Adv. in Math. 208, 710–797 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gorodetski, A., Hunt, B., Kaloshin, V.: Newton interpolation polynomials, discretization method, and certain prevalent properties in dynamical systems, Vol. 2, Proceedings of ICM 2006, Madrid, Spain, Zandi European Math Society, 2006, pp. 27–55

  37. Goroff D.: Hyperbolic sets for twist maps. Erg. Th. Dynam. Syst. 5(3), 337–339 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  38. Henon M.: Numerical study of quadratic area preserving mappings. Quart. of Appl. Math. 27(3), 291–312 (1969)

    MATH  MathSciNet  Google Scholar 

  39. Ilyashenko, Yu., Li, W.: Nonlocal bifurcations. Providence, R.I.: Amer. Math. Soc., 1999

  40. Izraelev F.: Nearly linear mappings and their applications. Physica D 1(3), 243–266 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Katok, A., Hasselbladtt, B.: Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications. 54. Cambridge: Cambridge University Press, 1995

  42. de la Llave, Rafael : A tutorial on KAM theory. In: Smooth ergodic theory and its applications (Seattle, WA, 1999). Volume 69 of Proc. Sympos. Pure Math. Paper I. Providence, RI: Amer. Math. Soc., 2001, pp. 175–292

  43. Liverani, C.: Birth of an elliptic island in a chaotic sea. Math. Phys. Electron. J. 10 (2004)

  44. Llibre J., Simo C.: Oscillatory solutions in the planar restricted three-body problem. Math. Ann. 248, 153–184 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  45. Manning A.: A relation between Lyapunov exponents, Hausdorff dimension and entropy. Erg. Th. Dynam. Syst. 1(4), 451–459 (1982)

    MathSciNet  Google Scholar 

  46. Manning A., McCluskey H.: Hausdorff dimension for horseshoes. Erg. Th. Dynam. Syst. 3(2), 251–260 (1983)

    MathSciNet  Google Scholar 

  47. MacKay R.S.: Cerbelli and Giona’s map is pseudo-Anosov and nine consequences. J. Nonlinear Sci. 16(4), 415–434 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. MacKay R.S., Meiss J.D., Percival I.C.: Stochasticity and transport in Hamiltonian systems. Phys. Rev. Lett. 52(9), 697–700 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  49. Mora L., Romero R.: Moser’s invariant curves and homoclinic bifurcations. Dyn. Syst. and Appli. 6, 29–42 (1997)

    MATH  MathSciNet  Google Scholar 

  50. Moreira G.: Stable intersections of Cantor sets and homoclinic bifurcations. Ann.Inst.Henri Poincaré 13(6), 741–781 (1996)

    MathSciNet  Google Scholar 

  51. Moser, J.: Stable and random motions in dynamical systems. Princeton, NJ: Princeton University Press, 1973

  52. McGehee R.: A stable manifold theorem for degenerate fixed points with applications to celestial mechanics. J. Diff. Eqs. 14, 70–88 (1973)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. Newhouse S.: Non-density of Axiom A(a) on S 2. Proc. A.M.S. Symp. Pure Math. 14, 191–202 (1970)

    MathSciNet  Google Scholar 

  54. Newhouse S.: Diffeomorphisms with infinitely many sinks. Topology 13, 9–18 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  55. Newhouse, S.: Lectures on dynamical systems. In: Dynamical systems (C.I.M.E. Summer School, Bressanone, 1978), Progr. Math., 8. Boston, MA: Birkhäuser, 1980, pp. 1–114

  56. Newhouse S.: The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math. 50, 101–151 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  57. Newhouse, S.: Topological entropy and Hausdorff dimension for area preserving diffeomorphisms of surfaces. In: Dynamical systems, Vol. III—Warsaw, Asterisque, 51. Paris: Soc. Math. France, 1978, pp. 323–334

  58. Newhouse S., Palis J.: Cycles and bifurcation theory. Asterisque 31, 44–140 (1976)

    MATH  Google Scholar 

  59. Palis, J., Takens, F.: Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Cambridge: Cambridge University Press, 1993

  60. Palis J., Takens F.: Hyperbolicity and the creation of homoclinic orbits. Ann. of Math. (2) 125(2), 337–374 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  61. Palis, J., Viana, M.: On the continuity of Hausdorff dimension and limit capacity for horseshoes. Lecture Notes in Math., 1331. Berlin: Springer, 1988

  62. Palis, J., Yoccoz, J.-Ch.: Non-Uniformly Hyperbolic Horseshoes Arising from Bifurcations of Poincaré Heteroclinic Cycles. Publ. Math. Inst. Hautes Études Sci. 110, 1–217 (2009)

  63. Pesin Ya.: Characteristic Lyapunov exponents and smooth ergodic theory. Usp. Mat. Nauk. 32(4(196)), 55–112 (1977)

    MathSciNet  Google Scholar 

  64. Przytycki F.: Examples of conservative diffeomorphisms of the two-dimensional torus with coexistence of elliptic and stochastic behavior. Erg. Th. Dynam. Syst. 2, 439–463 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  65. Robinson C.: Bifurcations to infinitely many sinks. Commun. Math. Phys. 90(3), 433–459 (1986)

    Article  ADS  Google Scholar 

  66. Sinai, Ya.: Topics in ergodic theory. Princeton Mathematical Series, 44. Princeton, NJ: Princeton University Press, 1994

  67. Sitnikov, K.: The existence of oscillatory motions in the three-body problems. Dokl. Akad. Nauk SSSR 133, 303–306 (Russian); translated as Sov. Phys. Dokl. 5, 647–650 (1960)

  68. Shepelyansky D., Stone A.: Chaotic Landau level mixing in classical and quantum wells. Phys. Rev. Lett. 74, 2098–2101 (1995)

    Article  ADS  Google Scholar 

  69. Siegel C., Moser J.: Lectures on Celestial Mechanics. Berlin-Heidelberg-New York: Springer, 1971

  70. Sternberg S.: The structure of local homeomorphisms of euclidian n-space. III. Amer. J. Math. 81, 578–604 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  71. Turaev, D.: On the genericity of Newhouse phenomenon. Talk on Equadiff 2003

  72. Turaev D.: Polynomial approximations of symplectic dynamics and richness of chaos in non-hyperbolic area-preserving maps. Nonlinearity 16(1), 123–135 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  73. Tedeschini-Lalli L., Yorke J.: How often do simple dynamical processes have infinitely many coexisting sinks?. Communi. Math. Phys. 106(4), 635–657 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  74. Wojtkowski M.: A model problem with the coexistence of stochastic and integrable behavior. Commun. Math. Phys. 80, 453–464 (1981)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  75. Xia J.: Melnikov method and transversal homoclinic points in the restricted three-body problem. J. Diff. Eqs. 96(1), 170–184 (1992)

    Article  MATH  Google Scholar 

  76. Xia, J.: Some of the problems that Saari did not solve. In: Celestial Mechanics, Dedicated to Donald Saari for his 60th Birthday. Proceedings of an International Conference on Celestial Mechanics, 15–19 December, 1999 at Northwestern University, Evanston, Illinois. Providence, RI: Amer. Math. Soc., Contemporary Mathematics, Vol. 292, 2002, p. 267

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Gorodetski.

Additional information

Communicated by G. Gallavotti

This work was supported in part by NSF grants DMS–0901627 and IIS-1018433.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorodetski, A. On Stochastic Sea of the Standard Map. Commun. Math. Phys. 309, 155–192 (2012). https://doi.org/10.1007/s00220-011-1365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1365-z

Keywords

Navigation