Skip to main content
Log in

Energy Decay for the Damped Wave Equation Under a Pressure Condition

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish the presence of a spectral gap near the real axis for the damped wave equation on a manifold with negative curvature. This result holds under a dynamical condition expressed by the negativity of a topological pressure with respect to the geodesic flow. As an application, we show an exponential decay of the energy for all initial data sufficiently regular. This decay is governed by the imaginary part of a finite number of eigenvalues close to the real axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman N.: Entropy and the localization of eigenfunctions. Ann. of Math. 168(2), 435–475 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anantharaman, N.: http://arXiv.org/abs/0904.1736v1[math.DG], to appear in G.A.F.A.

  3. Anantharaman N., Nonnenmacher S.: Half delocalization of eigenfunctions of the Laplacian on an Anosov manifold. Ann. Inst. Fourier 57(7), 2465–2523 (2007)

    MATH  MathSciNet  Google Scholar 

  4. Anosov D.V.: Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst. Steklov. 90, 1–235 (1967)

    MathSciNet  Google Scholar 

  5. Asch M., Lebeau G.: The spectrum of the damped wave operator for a bounded domain in \({\mathbb{R}^{2}}\). Exp. Math. 12, 227–241 (2003)

    MATH  MathSciNet  Google Scholar 

  6. Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions fot the observation, control and stabilization of waves from the boundary. SIAM J. Control and Optimization 30(5), 1024–1065 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Christianson H.: Semiclassical non-concentration near hyperbolic orbits, Corrigendum. J. Funct. Anal. 246(2), 145–195 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Cox S., Zuazua E.: The rate at which the energy decays in a dumped string. C.P.D.E.; Estimations sur le taux de décroissance exponentielle de l’énergie dans l’équation d’ondes. Note C.R.A.S. Paris 317, 249–254 (1993)

    MATH  MathSciNet  Google Scholar 

  9. Duistermaat, J.J.: Fourier Integral Operators. Progress in Mathematics 130, Basel: Birkhäuser, 1996

  10. Evans, L.C., Zworski, M.: http://math.berkeley.edu/~zworski/semiclassical.pdf

  11. Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear non selfadjoint operators. Trans. Math. Monograph 18, Providence, RI: Amer. Math. Soc., 1969

  12. Hitrik M.: Eigenfrequencies and expansions for damped wave equations. Meth. Appl. Anal. 10(4), 1–22 (2003)

    MathSciNet  Google Scholar 

  13. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Vol. I, II, Berlin: Springer Verlag, 1983

  14. Klingenberg W.P.A.: Riemannian manifolds with geodesic flows of Anosov type. Ann. of Math. 99(2), 1–13 (1974)

    Article  MathSciNet  Google Scholar 

  15. Lebeau, G.: Équation des ondes amorties. In: Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., 19, Dordrecht: Kluwer Acad. Publ., 1996, pp. 73–109

  16. Markus A.S., Matsaev V.I.: Comparison theorems for spectra of linear operators and spectral asymptotics. Trudy. Moskov. Mat. Obshch. 45, 133–181 (1982)

    MATH  MathSciNet  Google Scholar 

  17. Nonnenmacher S., Zworski M.: Quantum decay rates in chaotic scattering. Acta Math. 203(2), 149–304 (2009)

    Article  MathSciNet  Google Scholar 

  18. Nonnenmacher, S., Zworski, M.: Semiclassical resolvent estimates in chaotic scattering, http://arXiv.org/abs/0904.2986v2[math-ph], 2009

  19. Rauch J., Taylor M.: Decay of solutions to nondissipative hyperbolic systems on compact manifolds. C.P.A.M. 28, 501–523 (1975)

    MATH  MathSciNet  Google Scholar 

  20. Sjöstrand J.: Asymptotic distribution of eigenfrequencies for damped wave equations. Publ. Res. Inst. Math. Sci. 36(5), 573–611 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Walters, P.: An Introduction to Egodic Theory. Graduate Texts in Mathematics 79, Berlin-Heidelberg-New York: Springer, 1975

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Schenck.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenck, E. Energy Decay for the Damped Wave Equation Under a Pressure Condition. Commun. Math. Phys. 300, 375–410 (2010). https://doi.org/10.1007/s00220-010-1105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1105-9

Keywords

Navigation