Skip to main content
Log in

Yukawa Couplings in Heterotic Compactification

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a practical, algebraic method for efficiently calculating the Yukawa couplings of a large class of heterotic compactifications on Calabi-Yau three-folds with non-standard embeddings. Our methodology covers all of, though is not restricted to, the recently classified positive monads over favourable complete intersection Calabi-Yau three-folds. Since the algorithm is based on manipulating polynomials it can be easily implemented on a computer. This makes the automated investigation of Yukawa couplings for large classes of smooth heterotic compactifications a viable possibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greene B.R., Kirklin K.H., Miron P.J., Ross G.G.: 27**3 Yukawa Couplings For A Three Generation Superstring Model. Phys. Lett. B 192, 111 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  2. Candelas P.: Yukawa Couplings Between (2,1) Forms. Nucl. Phys. B 298, 458 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  3. Candelas P., Kalara S.: Yukawa couplings for a three generation superstring compactification. Nucl. Phys. B 298, 357 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  4. McOrist J., Melnikov I.V.: Summing the Instantons in Half-Twisted Linear Sigma Models. JHEP 0902, 026 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  5. Donagi, R., Reinbacher, R., Yau, S.T.: Yukawa couplings on quintic threefolds. http://arxiv.org/abs/hep-th/0605203v1, 2006

  6. Donagi R., He Y.H., Ovrut B.A., Reinbacher R.: The particle spectrum of heterotic compactifications. JHEP 0412, 054 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  7. Berglund P., Parkes L., Hubsch T.: The Complete Matter Sector In A Three Generation Compactification. Commun. Math. Phys. 148, 57 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies And Phenomenology. Cambridge: Cambridge Univ. Pr., 1987

  9. Gabella M., He Y.H., Lukas A.: An Abundance of Heterotic Vacua. JHEP 0812, 027 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. Anderson L.B., He Y.H., Lukas A.: Heterotic compactification, an algorithmic approach. JHEP 0707, 049 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  11. Candelas P., Dale A.M., Lutken C.A., Schimmrigk R.: Complete Intersection Calabi-Yau Manifolds. Nucl. Phys. B 298, 493 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  12. Okonek C., Schneider M., Spindler H.: Vector Bundles on Complex Projective Spaces. Birkhäuser Verlag, Basel (1988)

    Google Scholar 

  13. Anderson L.B., He Y.H., Lukas A.: Monad Bundles in Heterotic String Compactifications. JHEP 0807, 104 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  14. Anderson, L.B.: Heterotic and M-theory Compactifications for String Phenomenology. Oxford University DPhil Thesis, 2008, http://arxiv.org/abs/0808.3621v1[hep-th], 2008

  15. Anderson, L.B., He, Y.H., Lukas, A.: Vector bundle stability in heterotic monad models. In preparation

  16. Donaldson, S.K.: Some numerical results in complex differential geometry. http://arxiv.org/abs/math/0512625v1[math.DG], 2005. Douglas, M.R., Karp, R.L., Lukic, S., Reinbacher, R.: Numerical solution to the hermitian Yang-Mills equation on the Fermat quintic. JHEP 0712, 083 (2007); Douglas, M.R., Karp, R.L., Lukic, S., Reinbacher, R.: Numerical Calabi-Yau metrics. J. Math. Phys. 49, 032302 (2008). Braun, V., Brelidze, T., Douglas, M.R., Ovrut, B.A.: Calabi-Yau Metrics for Quotients and Complete Intersections. JHEP 0805, 080 (2008)

    Google Scholar 

  17. Blumenhagen R., Moster S., Weigand T.: Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds. Nucl. Phys. B 751, 186 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Blumenhagen R., Honecker G., Weigand T.: Loop-corrected compactifications of the heterotic string with line bundles. JHEP 0506, 020 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  19. Distler J., Greene B.R.: Aspects of (2,0) String Compactifications. Nucl. Phys. B 304, 1 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  20. Lukas A., Ovrut B.A., Waldram D.: On the four-dimensional effective action of strongly coupled heterotic string theory. Nucl. Phys. B 532, 43 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Lukas A., Ovrut B.A., Stelle K.S., Waldram D.: The universe as a domain wall. Phys. Rev. D 59, 086001 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  22. Hubsch T.: Calabi-Yau manifolds: A Bestiary for physicists. World Scientific, Singapore (1992)

    Google Scholar 

  23. Hartshorne, R.: Algebraic Geometry, Springer. GTM 52, Springer-Verlag, 1977; Griffith, P., Harris, J., Principles of algebraic geometry. New York: Wiley-Interscience, 1978

  24. Grayson, D., Stillman, M.: Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

  25. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular: a computer algebra system for polynomial computations. Centre for Computer Algebra, University of Kaiserslautern (2001). Available at http://www.singular.uni-kl.de/

  26. Gray, J., He, Y.H., Ilderton, A., Lukas, A.: “STRINGVACUA: A Mathematica Package for Studying Vacuum Configurations in String Phenomenology.” Comput. Phys. Commun. 180, 107–119 (2009); arXiv:0801.1508 [hep-th]. Gray, J., He, Y.H., Ilderton, A., Lukas, A.: “A new method for finding vacua in string phenomenology,” JHEP 0707 (2007) 023; Gray, J., He, Y.H., Lukas, A.: “Algorithmic algebraic geometry and flux vacua.” JHEP 0609 (2006) 031; The Stringvacua Mathematica package is available at: http://www-thphys.physics.ox.ac.uk/projects/Stringvacua/

  27. Braun, V., He, Y.H., Ovrut, B.A., Pantev, T.: “A heterotic standard model.” Phys. Lett. B 618, 252 (2005); “The exact MSSM spectrum from string theory.” JHEP 0605, 043 (2006)

    Google Scholar 

  28. Donagi R., He Y.H., Ovrut B.A., Reinbacher R.: Moduli dependent spectra of heterotic compactifications. Phys. Lett. B 598, 279 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  29. Bouchard V., Donagi R.: An SU(5) heterotic standard model. Phys. Lett. B 633, 783 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  30. Buchberger, B.: “An Algorithm for Finding the Bases Elements of the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal” (German), Phd thesis, Univ. of Innsbruck (Austria), 1965; B. Buchberger, “An Algorithmical Criterion for the Solvability of Algebraic Systems of Equations” (German), Aequationes Mathematicae 4(3), 374–383,1970; English translation can be found in: Buchberger, B., Winkler, F., eds.: “Gröbner Bases and Applications.” Volume 251 of the L.M.S. series, Cambridge: Cambridge University Press, 1998; Proc. of the International Conference “33 Years of Gröbner bases”; See B. Buchberger, “Gröbner Bases: A Short Introduction for Systems Theorists.” p1-19 Lecture Notes in Computer Science, Computer Aided Systems Theory - EUROCAST 2001, Berlin-Heidelberg: Springer, 2001, pp. 1–19

  31. Gray, J.: A Simple Introduction to Grobner Basis Methods in String Phenomenology. http://arxiv.org/abs/0901.1662v1[hep-th], 2009

  32. Anderson L.B., Gray J., Lukas A., Ovrut B.: The Edge Of Supersymmetry: Stability Walls in Heterotic Theory. Phys. Lett B 677, 190–194 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  33. Anderson L.B., Gray J., Lukas A., Ovrut B.: Stability Walls in Heterotic Theories. JHEP 0909, 026 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  34. Avramov, L.L., Grayson, D.R.: Resolutions and cohomology over complete intersections, In: Computations in algebraic geometry with Macaulay 2, Algorithms Comput. Math., Vol. 8, Berlin: Springer, 2002, pp. 131–178

  35. Boardman J.M.: The principle of signs. Enseignement Math. (2) 12, 191–194 (1966)

    MATH  MathSciNet  Google Scholar 

  36. Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitre 10. Algèbre homologique, Berlin: Springer-Verlag, 2007, (Reprint of the 1980 original [Paris: Masson])

  37. Cartan H., Eilenberg S.: Homological algebra. Princeton University Press, Princeton, N. J. (1956)

    MATH  Google Scholar 

  38. Godement, R.: Topologie algébrique et théorie des faisceaux, Actualit’es Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13, Paris: Hermann, 1964

  39. Grayson D.R.: Adams operations on higher K-theory. K-Theory 6(2), 97–111 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  40. Swan R.G.: Cup products in sheaf cohomology, pure injectives, and a substitute for projective resolutions. J. Pure Appl. Algebra 144(2), 169–211 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  41. Weibel, C.A.: An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge: Cambridge University Press, 1994

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara B. Anderson.

Additional information

Communicated by N.A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, L.B., Gray, J., Grayson, D. et al. Yukawa Couplings in Heterotic Compactification. Commun. Math. Phys. 297, 95–127 (2010). https://doi.org/10.1007/s00220-010-1033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1033-8

Keywords

Navigation