Skip to main content
Log in

The Pauli Principle Revisited

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

By the Pauli exclusion principle, no quantum state can be occupied by more than one electron. One can state this as a constraint on the one electron density matrix that bounds its eigenvalues by 1. Shortly after its discovery, the Pauli principle was replaced by anti-symmetry of the multi-electron wave function. In this paper we solve a longstanding problem about the impact of this replacement on the one electron density matrix, that goes far beyond the original Pauli principle. Our approach uses Berenstein and Sjamaar’s theorem on the restriction of an adjoint orbit onto a subgroup, and allows us to treat any type of permutational symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berenstein A., Sjamaar R.: Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion. J. Amer. Math. Soc. 13(2), 433–466 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein I., Gelfand I., Gelfand S.: Schubert cells and cohomology of the space G/P. Russ. Math. Survey 28(3), 1–26 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borland R.E., Dennis K.: The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six. J. Phys. B: Atom Molec. Phys. 5, 7–15 (1972)

    Article  ADS  Google Scholar 

  4. Cohen, A.M., van Leeuwen, M., Lisser, B.: LiE, a software package for Lie group theoretical computations, available at http://www-mathlabo.univ-poitiers.fr/~maavl/LiE/

  5. Coleman A.J.: Structure of Fermion Density Matrices. Rev. Mod. Phys. 35, 668–686 (1963)

    Article  ADS  Google Scholar 

  6. Coleman A.J., Yukalov V.I.: Reduced density matrices: Coulson’s challenge. Springer, Berlin (2000)

    MATH  Google Scholar 

  7. Fulton W., Harris J.: Representation theory. Springer, New York (1991)

    MATH  Google Scholar 

  8. Fulton, W.: Young Tableaux, with Applications to Representation Theory and Geometry. Cambridge University Press, 1997

  9. Fulton W.: Schubert varieties and degeneracy loci. Springer, Berlin (1998)

    MATH  Google Scholar 

  10. Dadok J., Kac V.: Polar representations. J. Algebra 92(2), 504–524 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duck, T., Sudarshan, E.C.G.: Pauli and the spin-statistics theorem. Singapore: World Scientific, 1997

  12. Franz M.: Moment polytopes of projective G-varieties and tensor products of symmetric group representations. J. Lie Theory 12, 539–549 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Franz, M.: Convex, a Maple package for convex geometry, available at http://www-fourier.ujf-grenoble.fr/~franz/convex/

  14. Grudziński, H., Hirsch, J.: Search for new conditions for fermion N-representability. http://arXiv.org/list/math-ph/0311026, 2003

  15. Klyachko A.: Stable bundles, representation theory, and Hermitian operators. Selecta Math. 4, 419–445 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klyachko, A.: Vector bundles, Linear representations, and Spectral problems. Proc. Int. Congress of Math. Beijing 2002, Invited Lectures, Vol. II, Beijing: Higher Edication Press, 2003, pp. 599–614

  17. Klyachko, A.: Quantum marginal problem and representations of the symmetric group. http://arXiv.org/list/quant-ph/0409113, 2004

  18. Klyachko A.: Quantum marginal problem and N-representability. J. Phys. Conf. Series 36, 72–86 (2006)

    Article  ADS  Google Scholar 

  19. Klyachko, A.: Dynamic symmetry approach to entnglement. In: Proc. NATO Advanced Study Inst., Cargese, Corsica, France, 2005, J.-P. Gazeau et. al. eds., Amsterdam: IOS Press, 2007, pp. 25–54

  20. Lascoux A.: Classes de Chern d’un produit tensoriel. C. R. Acad. Sci. Paris 286, 385–387 (1978)

    MathSciNet  MATH  Google Scholar 

  21. Lascoux A., Schützenberger M.-P.: Symmetry and flag manifolds. Lecture Notes in Mathematics 25, 159–198 (1974)

    Google Scholar 

  22. Lascoux A., Schützenberger M.-P.: Polyôme de Schubert. C. R. Acad. Sci. Paris 294, 447–450 (1982)

    MATH  Google Scholar 

  23. Liu Y.-K., Christandl M., Verstraete V.: N-representability is QMA-complete. Phys. Rev. Lett. 98, 110503 (2007)

    Article  ADS  Google Scholar 

  24. Macdonald I.G.: Schubert polynomials. London Math. Soc. Lecture Notes 166, 73–99 (1991)

    MathSciNet  Google Scholar 

  25. Macdonald I.G.: Symmetric functions and Hall polynomials. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  26. Mazziotti, D.A. (eds): Reduced density matrix mechanics with application to many electron atoms and molecules. John Wiley and Sons, New York (2007)

    Google Scholar 

  27. Müller C.W.: Sufficient conditions for pure state N-representability. J. Phys. A: Math. Gen. 32, 4139–4148 (1999)

    Article  ADS  MATH  Google Scholar 

  28. Ness L.: A stratification of the null cone via moment map. Amer. J. Math. 106, 1281–1329 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peltzer C.P., Brandstatter J.J.: Studies in the theory of generalized density operators III. J. Math. Anal. Appl. 33, 263–277 (1971)

    Article  MathSciNet  Google Scholar 

  30. Perelomov A.M.: Generalized coherent states and their applications. Springer, Berlin (1986)

    MATH  Google Scholar 

  31. Ruskai M.B.: N-representability problem: Particle-hole equivalence. J. Math. Phys. 11, 3218–3224 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ruskai M.B.: Comments on Peltzer–Brandstatter papers: Two counterexamples. J. Math. Anal. Appl. 44, 131–135 (1973)

    Article  MathSciNet  Google Scholar 

  33. Ruskai M.B.: Connecting N-representability to Weyl’s problem: The one particle density matrix for N = 3 and R = 6. J. Phys. A: Math. Theor. 40, F961–F967 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Vinberg, E., Popov, V.: Invariant theory. In: “Algebraic Geometry IV”, A.N. Parshin, I. Shafarevich, eds., Berlin: Springer, 1992

  35. Weyl H.: The theory of groups and quantum mechanics. Dover, New York (1931)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Klyachko.

Additional information

Communicated by M.B. Ruskai

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altunbulak, M., Klyachko, A. The Pauli Principle Revisited. Commun. Math. Phys. 282, 287–322 (2008). https://doi.org/10.1007/s00220-008-0552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0552-z

Keywords

Navigation