Skip to main content
Log in

How Smooth is Your Wavelet? Wavelet Regularity via Thermodynamic Formalism

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A popular wavelet reference [W] states that “in theoretical and practical studies, the notion of (wavelet) regularity has been increasing in importance.” Not surprisingly, the study of wavelet regularity is currently a major topic of investigation. Smoother wavelets provide sharper frequency resolution of functions. Also, the iterative algorithms to construct wavelets converge faster for smoother wavelets. The main goals of this paper are to extend, refine, and unify the thermodynamic approach to the regularity of wavelets and to devise a faster algorithm for estimating regularity. The thermodynamic approach works equally well for compactly supported and non-compactly supported wavelets, and also applies to non-analytic wavelet filters.

We present an algorithm for computing the Sobolev regularity of wavelets and prove that it converges with super-exponential speed. As an application we construct new examples of wavelets that are smoother than the Daubechies wavelets and have the same support. We establish smooth dependence of the regularity for wavelet families, and we derive a variational formula for the regularity. We also show a general relation between the asymptotic regularity of wavelet families and maximal measures for the doubling map. Finally, we describe how these results generalize to higher dimensional wavelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen A., Conze J.-P.: Régularité des bases d’ondelettes et mesures ergodiques. Rev. Mat. Iberoamericana 8, 351–365 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Cohen A., Daubechies I.: A new technique to estimate the regularity of refinable functions. Rev. Mat. Iberoamericana 12, 527–591 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Daubechies, I.: Ten lectures on wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1992

  4. Daubechies, I.: Using Fredholm determinants to estimate the smoothness of refinable functions. Approximation theory VIII, Vol. 2 (College Station, TX, 1995), Ser. Approx. Decompos. 6 River Edge, NJ: World Sci. Publishing, 1995, pp. 89–112

  5. Daubechies I.: Orthonormal Bases of Compactly Supported Wavelets II. SIAM J. Math. Anal. 24, 499–519 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eirola T.: Sobolev characterization of solutions of dilation equations. SIAM J. Math. Anal. 23, 1015–103 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan A., Sun Q.: Regularity of Butterworth Refinable Functions. Asian J. Math. 5(3), 433–440 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Gohberg I., Goldberg S., Kaashoek M.A.: Classes of linear operators. Vol 1. Birthauser Verlag, Basel (1990)

    Google Scholar 

  9. Halmos, P.: Introduction to Hilbert space and the theory of spectral multiplicity. Reprint of the Second (1957) edition, Providence, RI: AMS/Chelsea Publishing, 1998

  10. Hervé L.: Comportement asymptotique dans l’algorithme de transformée en ondelettes. Rev. Mat. Iberoamericana 11, 431–451 (1985)

    Google Scholar 

  11. Hervé L.: Construction et régularité des fonctions dćhelle. SIAM J. Math. Anal. 26, 1361–1385 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jenkinson O., Pollicott M.: Computing invariant densities and metric entropy. Commun. Math. Phys. 211, 687–703 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Jenkinson O., Pollicott M.: Orthonormal expansions of invariant densities for expanding maps. Adv. in Math. 192, 1–34 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ojanen H.: Orthonormal compactly supported wavelets with optimal sobolev regularity. Applied and Computational Harmonic Analysis 10, 93–98 (2001)

    Article  MATH  Google Scholar 

  15. Oppenheim, A., Shaffer, R.: Digital Signal Processing. Upper Saddie River, NJ: Pearson Higher Education, 1986

  16. Parry, W., Pollicott, M.: Zeta Functions and the Periodic Orbit Structures of Hyperbolic Dynamics. Astérisque 187–188 (1990)

  17. Pollicott M.: Meromorphic extensions for generalized zeta functions. Invent. Math 85, 147–164 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ruelle, D.: Thermodynamic Formalism. Reading, MA: Addison-Wesley, 1978

    Google Scholar 

  19. Ruelle D.: An extension of the theory of Fredholm determinants. Inst. Hautes Etudes Sci. Publ. Math. 72, 175–193 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Simon, B.: Trace ideals and their applications. LMS Lecture Note Series, Vol 35, Cambridge: Cambridge University Press, 1979

  21. Sun Q.: Sobolev exponent estimate and asymptotic regularity of M band Daubechies scaling function. Constructive Approximation 15, 441–465 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tangerman, F.: Meromorphic continuation of Ruelle zeta functions. Ph.D. Thesis, Boston University, 1988

  23. Villemoes L.: Energy moments in time and frequency for two-scale difference equation solutions and wavelets. SIAM J. Math. Anal. 23, 1519–1543 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Matlab, Wavelet Toolbox Documentation. http://www.mathworks.com/access/helpdesk/help/tool-box/wavelet/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Weiss.

Additional information

Communicated by J.L. Lebowitz

The work of the second author was partially supported by a National Science Foundation grant DMS-0355180.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollicott, M., Weiss, H. How Smooth is Your Wavelet? Wavelet Regularity via Thermodynamic Formalism. Commun. Math. Phys. 281, 1–21 (2008). https://doi.org/10.1007/s00220-008-0457-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0457-x

Keywords

Navigation