Skip to main content
Log in

Wavepacket Preservation Under Nonlinear Evolution

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study nonlinear systems of hyperbolic PDE’s in \({\mathbb{R}}^{d}\), the hyperbolicity is understood in a wider sense, namely multiple roots of the characteristic equation are allowed and dispersive equations are permitted. They describe wave propagation in dispersive nonlinear media such as, for example, electromagnetic waves in nonlinear photonic crystals. The initial data is assumed to be a finite sum of wavepackets referred to as a multi-wavepacket. The wavepackets and the medium nonlinearity are characterized by two principal small parameters β and \(\varrho\) where: (i) \(\frac{1}{\beta}\) is a factor describing spatial extension of involved wavepackets; (ii) \(\frac{1}{\varrho}\) is a factor describing the relative magnitude of the linear part of the evolution equation compared to its nonlinearity. A key element in our approach is a proper definition of a wavepacket. Remarkably, the introduced definition has a flexibility sufficient for a wavepacket to preserve its defining properties under a general nonlinear evolution for long times. In particular, the corresponding wave vectors and the band numbers of involved wavepackets are “conserved quantities”. We also prove that the evolution of a multi-wavepacket is described with high accuracy by a properly constructed system of envelope equations with a universal nonlinearity. The universal nonlinearity is obtained by a time averaging applied to the original nonlinearity, in simpler cases the averaged system turns into a system of Nonlinear Schrodinger equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin A. and Figotin A. (2001). Nonlinear Photonic Crystals: I. Quadratic nonlinearity. Waves in Random Media 11: R31–R102

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Babin A. and Figotin A. (2002). Nonlinear Photonic Crystals: II. Interaction classification for quadratic nonlinearities. Waves in Random Media 12: R25–R52

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Babin A. and Figotin A. (2003). Nonlinear Photonic Crystals: III. Cubic Nonlinearity. Waves in Random Media 13: R41–R69

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Babin A. and Figotin A. (2003). Nonlinear Maxwell Equations in Inhomogenious Media. Commun. Math. Phys. 241: 519–581

    MATH  ADS  MathSciNet  Google Scholar 

  5. Babin, A., Figotin, A.: Polylinear spectral decomposition for nonlinear Maxwell equations. In: Agranovich, M.S., Shubin, M.A. (eds.) Partial Differential Equations, Advances in Mathematical Sciences, American Mathematical Society Translations-Series 2, Vol. 206, Providence, RI: Amer. Math. Soc., 2002, pp. 1–28

  6. Babin A. and Figotin A. (2005). Nonlinear Photonic Crystals: IV Nonlinear Schrodinger Equation Regime. Waves in Random and Complex Media, 15(2): 145–228

    Article  ADS  MathSciNet  Google Scholar 

  7. Babin A. and Figotin A. (2006). Linear Superposition In Nonlinear Wave Dynamics. Rev. Math. Phys. 18(9): 971–1053

    Article  MATH  MathSciNet  Google Scholar 

  8. Babin A., Mahalov A. and Nicolaenko B. (1999). Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J. 48(3): 1133–1176

    MATH  MathSciNet  Google Scholar 

  9. Babin A., Mahalov A. and Nicolaenko B. (2000). Fast Singular Oscillating Limits and Global Regularity for the 3D Primitive Equations of Geophysics. M2AN 34(2): 201–222

    Article  MATH  MathSciNet  Google Scholar 

  10. Ben Youssef W. and Lannes D. (2002). The long wave limit for a general class of 2D quasilinear hyperbolic problems. Comm. Par. Differ. Eqs. 27(5–6): 979–1020

    Article  MATH  MathSciNet  Google Scholar 

  11. Bogoliubov N.N. and Mitropolsky Y.A. (1961). Asymptotic Methods In The Theory Of Non-Linear Oscillations. Hindustan Pub. Corp., Delhi

    Google Scholar 

  12. Boyd R. (1992). Nonlinear Optics. Academic Press, London

    Google Scholar 

  13. Bona J.L., Colin T. and Lannes D. (2005). Long wave approximations for water waves. Arch. Rat. Mech. Anal. 178(3): 373–410

    Article  MATH  MathSciNet  Google Scholar 

  14. Bourgain, J.: Global solutions of nonlinear Schrödinger equations. American Mathematical Society Colloquium Publications 46. Providence, RI: Amer. Math. Soc., 1999

  15. Butcher P. and Cotter D. (1993). The Elements of Nonlinear Optics. Cambridge Univ. Press, Cambridge

    Google Scholar 

  16. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics 10, New York:New York University, Courant Institute of Mathematical Sciences, Providence, RI: Amer. Math. Soc. 2003

  17. Colin T. (2002). Rigorous derivation of the nonlinear Schrödinger equation and Davey-Stewartson systems from quadratic hyperbolic systems. Asymptot. Anal. 31(1): 69–91

    MATH  MathSciNet  Google Scholar 

  18. Colin T. and Lannes D. (2004). Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems. Discrete Contin. Dyn. Syst. 11(1): 83–100

    Article  MATH  MathSciNet  Google Scholar 

  19. Craig W. and Groves M.D. (2000). Normal forms for wave motion in fluid interfaces. Wave Motion 31(1): 21–41

    Article  MATH  MathSciNet  Google Scholar 

  20. Craig W., Sulem C. and Sulem P.-L. (1992). Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity 5(2): 497–522

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Dobrokhotov, S.Yu., Maslov, V.P., Omelyanov, G.A.: Multiwave interaction in weakly nonlinear media with dispersion. In: Mathematical mechanisms of turbulence, i, Kiev: Akad. Nauk Ukrain. SSR, Inst. Mat., 1986, pp. 25–45

  22. Dineen S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer, Berlin-Heidelberg-New york

    MATH  Google Scholar 

  23. Giannoulis J. and Mielke A. (2004). The nonlinear Schrödinger equation as a macroscopic limit for an oscillator chain with cubic nonlinearities. Nonlinearity 17(2): 551–565

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Goodman R.H., Weinstein M.I. and Holmes P.J. (2001). Nonlinear propagation of light in one-dimensional periodic structures. J. Nonlinear Sci. 11(2): 123–168

    MATH  ADS  MathSciNet  Google Scholar 

  25. Groves M.D. and Schneider G. (2005). Modulating pulse solutions for quasilinear wave equations. J. Differ. Eq. 219(1): 221–258

    Article  MATH  MathSciNet  Google Scholar 

  26. Hayashi N. and Naumkin P. (2002). Asymptotics of small solutions to nonlinear Schrödinger equations with cubic nonlinearities. Int. J. Pure Appl. Math. 3(3): 255–273

    MATH  MathSciNet  Google Scholar 

  27. Hille E. and Phillips R.S. (1991). Functional Analysis and Semigroups. AMS, Providence RI

    Google Scholar 

  28. Infeld E. and Rowlands G. (2000). Nonlinear Waves, Solitons and Chaos. 2nd ed. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Joly J.-L., Metivier G. and Rauch J. (1998). Diffractive nonlinear geometric optics with rectification. Indiana Univ. Math. J. 47(4): 1167–1241

    Article  MATH  MathSciNet  Google Scholar 

  30. Kalyakin, L.A.: Long-wave asymptotics. Integrable equations as the asymptotic limit of nonlinear systems. Usp. Mat. Nauk 44(1)(265), 5–34, 247 (1989); translation in Russ. Math. Surv. 44(1), 3–42 (1989)

  31. Kalyakin L.A. (1988). Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium. Math. USSR Sb. 60(2): 457–483

    Article  MathSciNet  Google Scholar 

  32. Krieger J. and Schlag W. (2006). Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Amer. Math. Soc. (electronic) 19(4): 815–920

    Article  MATH  MathSciNet  Google Scholar 

  33. Kuksin, S.B.: Fifteen years of KAM for PDE. Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Providence, RI: Amer. Math. Soc., 2004, pp. 237–258

  34. Kirrmann P., Schneider G. and Mielke A. (1992). The validity of modulation equations for extended systems with cubic nonlinearities. Proc. Roy. Soc. Edinburgh Sect. A 122(1–2): 85–91

    MathSciNet  MATH  Google Scholar 

  35. Kato T. (1980). Perturbation Theory for Linear Operators. Springer, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  36. Lax P.D. (1968). Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21: 467–490

    Article  MATH  MathSciNet  Google Scholar 

  37. Mitropolskii Yu.A. and Nguyen V.D. (1997). Applied asymptotic methods in nonlinear oscillations. Solid Mechanics and its Applications 55. Kluwer Academic Publishers Group, Dordrecht

    Google Scholar 

  38. Maslov. V.P.: Non-standard characteristics in asymptotic problems. Usp. Mat. Nauk 38:6, 3–36 (1983), translation in Russ. Math. Surv. 38:6, 1–42 (1983)

    Google Scholar 

  39. Maslov V.P. (2001). Mathematical aspects of integral optics. Russ. J. Math. Phys. 8(1): 83–105

    MATH  MathSciNet  Google Scholar 

  40. Mielke A., Schneider G. and Ziegra A. (2000). Comparison of inertial manifolds and application to modulated systems. Math. Nachr. 214: 53–69

    Article  MATH  MathSciNet  Google Scholar 

  41. Moloney J. and Newell A. (2004). Nonlinear Optics. Westview Press, Advanced Book Program, Boulder, CO

    MATH  Google Scholar 

  42. Mills D. (1991). Nonlinear Optics. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  43. Nayfeh A.H. (1973). Perturbation Methods. Wiley, New York

    MATH  Google Scholar 

  44. Ostrovsky L. and Potapov A. (1999). Modulated Waves. The John Hopkins Univ. Press, Baltimore MD

    MATH  Google Scholar 

  45. Pankov A. (2005). Travelling Waves And Periodic Oscillations In Fermi-Pasta-Ulam Lattices. Imperial College Press, London

    MATH  Google Scholar 

  46. Phillips O.M. (1974). Wave Interactions. In: Leibovich, S. and Seebass, A.R. (eds) Nonlinear Waves, pp. Cornell Univ. Press, Ithaca and London

    Google Scholar 

  47. Pierce R.D. and Wayne C.E. (1995). On the validity of mean-field amplitude equations for counterpropagating wavetrains. Nonlinearity 8(5): 769–779

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Sauter E.G. (1996). Nonlinear Optics. Wiley-Interscience, New york

    Google Scholar 

  49. Schlag W. (2006). Spectral theory and nonlinear partial differential equations: a survey. Discrete Contin. Dyn. Syst. 15(3): 703–723

    MATH  MathSciNet  Google Scholar 

  50. Schneider G. (1998). Justification of modulation equations for hyperbolic systems via normal forms. NoDEA Nonlinear Differential Equations Appl. 5(1): 69–82

    Article  MATH  MathSciNet  Google Scholar 

  51. Schneider G. (2005). Justification and failure of the nonlinear Schrödinger equation in case of non-trivial quadratic resonances. J. Differ. Eq. 216(2): 354–386

    Article  MATH  Google Scholar 

  52. Schneider G. and Uecker H. (2001). Nonlinear coupled mode dynamics in hyperbolic and parabolic periodically structured spatially extended systems. Asymptot. Anal. 28(2): 163–180

    MATH  MathSciNet  Google Scholar 

  53. Schneider G. and Uecker H. (2003). Existence and stability of modulating pulse solutions in Maxwell’s equations describing nonlinear optics. Z. Angew. Math. Phys. 54(4): 677–712

    MATH  MathSciNet  Google Scholar 

  54. Schneider G. and Wayne C.E. (2003). Estimates for the three-wave interaction of surface water waves. European J. Appl. Math. 14(5): 547–570

    Article  MATH  MathSciNet  Google Scholar 

  55. Sipe J.E., Bhat N., Chak P. and Pereira S. (2004). Effective field theory for the nonlinear optical properties of photonic crystals. Phys. Rev. E 69: 016604

    Article  ADS  Google Scholar 

  56. Slusher R.E. and Eggleton B.J. (2003). Nonlinear Photonic Crystals. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  57. Sulem C. and Sulem P.-L. (1999). The Nonlinear Schrodinger Equation. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  58. Volkov S.N. and Sipe J.E. (2004). Nonlinear optical interactions of wave packets in photonic crystals: Hamiltonian dynamics of effective fields. Phys. Rev. E 70: 066621

    Article  ADS  Google Scholar 

  59. Soffer A. and Weinstein M.I. (1999). Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math. 136(1): 9–74

    Article  MathSciNet  ADS  Google Scholar 

  60. Weissert T.P. (1997). The Genesis of Simulation in Dynamics: pursuing the Fermi-Pasta-Ulam problem. Springer-Verlag, New York

    MATH  Google Scholar 

  61. Whitham G. (1974). Linear and Nonlinear Waves. John Wiley & Sons, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Figotin.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babin, A., Figotin, A. Wavepacket Preservation Under Nonlinear Evolution. Commun. Math. Phys. 278, 329–384 (2008). https://doi.org/10.1007/s00220-007-0406-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0406-0

Keywords

Navigation