Skip to main content
Log in

Local Asymptotic Normality in Quantum Statistics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The theory of local asymptotic normality for quantum statistical experiments is developed in the spirit of the classical result from mathematical statistics due to Le Cam. Roughly speaking, local asymptotic normality means that the family \(\varphi_{\theta_{0}+u/\sqrt{n}}^{n}\) consisting of joint states of n identically prepared quantum systems approaches in a statistical sense a family of Gaussian state ϕ u of an algebra of canonical commutation relations. The convergence holds for all “local parameters” \(u\in {\mathbb{R}}^{m}\) such that \(\theta = \theta_{0} + u/\sqrt{n}\) parametrizes a neighborhood of a fixed point \(\theta_{0} \in \Theta \subset {\mathbb{R}}^{m}\) .

In order to prove the result we define weak and strong convergence of quantum statistical experiments which extend to the asymptotic framework the notion of quantum sufficiency introduces by Petz. Along the way we introduce the concept of canonical state of a statistical experiment, and investigate the relation between the two notions of convergence. For the reader’s convenience and completeness we review the relevant results of the classical as well as the quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armen M.A., Au J.K., Stockton J.K., Doherty A.C. and Mabuchi H. (2002). Adaptive Homodyne Measurement of Optical Phase. Phys. Rev. Lett. 89: 133–602

    Article  Google Scholar 

  2. Artiles L., Gill R. and Guţă M. (2005). An invitation to quantum tomography. J. Royal Statist. Soc. B (Methodological) 67: 109–134

    Article  MATH  Google Scholar 

  3. Bagan E., Baig M. and Munoz-Tapia R. (2002). Optimal scheme for estimating a pure qubit state via local measurements. Phys. Rev. Lett. 89: 277–904

    Article  Google Scholar 

  4. Bagan E., Ballester M.A., Gill R.D., Monras A. and Munõz-Tapia R. (2006). Optimal full estimation of qubit mixed states. Phys. Rev. A 73: 032–301

    Google Scholar 

  5. Barndorff-Nielsen O.E., Gill R. and Jupp P.E. (2003). On quantum statistical inference (with discussion). J. R. Statist. Soc. B 65: 775–816

    Article  MATH  MathSciNet  Google Scholar 

  6. Belavkin V.P. (1976). Generalized heisenberg uncertainty relations and efficient measurements in quantum systems. Theor. Math. Phys. 26: 213–222

    Article  MathSciNet  Google Scholar 

  7. Butucea, C., Guţă, M., Artiles, L.: Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data. arxiv.org/abs/math/0504058, to appear in Annals of Statistics 35, 465–494 (2007)

  8. Cirac J.I., Ekert A.K. and Macchiavello C. (1999). Optimal purification of single qubits. Phys. Rev. Lett. 82: 43–44

    Article  Google Scholar 

  9. D’Ariano G.M., Leonhardt U. and Paul H. (1995). Homodyne detection of the density matrix of the radiation field. Phys. Rev. A 52: R1801–R1804

    Article  ADS  Google Scholar 

  10. DellAntonio G.F. (1967). On the limits of sequences of normal states. Comm. Pure Appl. Math. 20: 413–429

    Article  MathSciNet  Google Scholar 

  11. Gill, R.D.: Asymptotic information bounds in quantum statistics. quant-ph/0512443, to appear in Annals of Statistics

  12. Gill R.D. and Massar S. (2000). State estimation for large ensembles. Phys. Rev. A 61: 042312

    Article  ADS  Google Scholar 

  13. Guţă, M., Janssens, B., Kahn, J.: Optimal estimation of qubit states with continuous time measurements. www.arxiv.org/quant-ph/0608074 2006, to appear in Commun. Math. Phys.

  14. Guţă M. and Kahn J. (2006). Local asymptotic normality for qubit states. Phys. Rev. A 73: 052108

    Article  ADS  MathSciNet  Google Scholar 

  15. Guţă M. and Matsumoto K. (2006). Optimal cloning of mixed gaussian states. Phys. Rev. A 74: 032305

    Article  ADS  Google Scholar 

  16. Hannemann, T., Reiss, D., Balzer, C., Neuhauser, W., Toschek, P.E., Wunderlich, C.: Self-learning estimation of quantum states. Phys. Rev. A, 65, 050303–+ (2002)

    Google Scholar 

  17. Hayashi, M.: Presentations at maphysto and quantop workshop on quantum measurements and quantum stochastics, Aarhus, 2003, and Special week on quantum statistics, Isaac Newton Institute for Mathematical Sciences, Cambridge, 2004

  18. Hayashi, M.: Quantum estimation and the quantum central limit theorem. Bulletin of the Mathematical Society of Japan 55, 368–391 (2003) (in Japanese; Translated into English in quant-ph/0608198)

  19. Hayashi, M., Matsumoto, K.: Statistical model with measurement degree of freedom and quantum physics. In: Masahito Hayashi, editor, Asymptotic theory of quantum statistical inference: selected papers, River Edge HJ: 162–170. World Scientific, 2005, pp. 162–170 (English translation of a paper in Japanese published in Surikaiseki Kenkyusho Kokyuroku, Vol. 35, pp. 7689-7727, 2002)

  20. Hayashi, M., Matsumoto K.: Asymptotic performance of optimal state estimation in quantum two level system. http://arxiv.org/list/quant-ph/0411073, 2007

  21. Hayashi, M., editor. Asymptotic theory of quantum statistical inference: selected papers, River Edge, NJ: World Scientific, 2005

  22. Hayashi M. (2006). Quantum Information. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  23. Helstrom C.W. (1969). Quantum detection and estimation theory. J. Stat. Phys. 1: 231–252

    Article  MathSciNet  ADS  Google Scholar 

  24. Holevo A.S. (1982). Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam

    MATH  Google Scholar 

  25. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras I. Providence, RI: Amer. Math. Soc., 1997

  26. Keyl M. and Werner R.F. (2001). Estimating the spectrum of a density operator. Phys. Rev. A 64: 052311

    Article  ADS  MathSciNet  Google Scholar 

  27. Koashi M. and Imoto N. (2002). Operations that do not disturb partially known quantum states. Phys. Rev. A 66: 022318

    Article  ADS  MathSciNet  Google Scholar 

  28. Le Cam L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer Verlag, New York

    MATH  Google Scholar 

  29. Leonhardt U. (1997). Measuring the Quantum State of Light. Cambridge University Press, Cambridge

    Google Scholar 

  30. Leonhardt U., Munroe M., Kiss T., Richter Th. and Raymer M.G. (1996). Sampling of photon statistics and density matrix using homodyne detection. Optics Communications 127: 144–160

    Article  ADS  Google Scholar 

  31. Lesniewski A. and Ruskai M.B. (1999). Monotone riemannian metrics and relative entropy on noncommutative probability spaces. J. Math. Phys. 40: 5702–5724

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Massar S. and Popescu S. (1995). Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74: 1259–1263

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Mosonyi M. and Petz D. (2004). Structure of sufficient quantum coarse-grainings. Lett. Math. Phys. 68: 19–30

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Ogawa, T., Nagaoka, H.: On the statistical equivalence for sets of quantum states. UEC-IS-2000-5, IS Technical Reports, Univ. of Electro-Comm., 2000

  35. Ohya M. and Petz D. (2004). Quantum Entropy and its Use. Springer Verlag, Berlin-Heidelberg

    Google Scholar 

  36. Paris, M.G.A., Řeháček, J. (eds): Quantum State Estimation Lecture Notes in Physics, vol. 644, Berlin-Heidelberg-New York: Springer, 2004

  37. Petz D. (1986). Sufficient subalgebras and the relative entropy of states of a von neumann algebra. Commun. Math. Phys. 105: 123–131

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Petz D. (1990). An Invitation to the Algebra of Canonical Commutation Relations. Leuven University Press, Leuven

    MATH  Google Scholar 

  39. Petz D. (2002). Covariance and Fisher information in quantum mechanics. J. Phys. A, Mathematical General 35: 929–939

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Petz D. and Jencova A. (2006). Sufficiency in quantum statistical inference. Commun. Math. Phys. 263: 259–276

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Pollard D. (1984). Convergence of Stochastic Processes. Springer-Verlag, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  42. Schiller S., Breitenbach G., Pereira S.F., Müller T. and Mlynek J. (1996). Quantum statistics of the squeezed vacuum by measurement of the density matrix in the number state representation. Phys. Rev. Lett. 77: 2933–2936

    Article  ADS  Google Scholar 

  43. Smith, G.A., Silberfarb, A., Deutsch, I.H., Jessen, P.S.: Efficient Quantum-State Estimation by Continuous Weak Measurement and Dynamical Control. Phys. Rev. Lett. 97, 180403–+ (2006)

    Google Scholar 

  44. Smithey D.T., Beck M., Raymer M.G. and Faridani A. (1993). Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett. 70: 1244–1247

    Article  ADS  Google Scholar 

  45. Strasser H. (1985). Mathematical Theory of Statistics. Berlin-New York, De Gruyter

    MATH  Google Scholar 

  46. Takesaki M. (1979). Theory of Operator Algebras I. Springer Verlag, New York

    MATH  Google Scholar 

  47. Takesaki M. (2003). Theory of Operator Algebras II. Springer Verlag, Berlin

    MATH  Google Scholar 

  48. Takesaki M. (2003). Theory of Operator Algebras III. Springer Verlag, Berlin

    MATH  Google Scholar 

  49. Torgersen E. (1991). Comparison of Statistical Experiments. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  50. van der Vaart A.W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  51. van der Vaart, A.W., Wellner, J.A. (1996). Weak Convergence and Empirical Processes. Springer, New York

    MATH  Google Scholar 

  52. Vidal G., Latorre J.I., Pascual P. and Tarrach R. (1999). Optimal minimal measurements of mixed states. Phys. Rev. A 60: 126

    Article  ADS  Google Scholar 

  53. Vogel K. and Risken H. (1989). Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40: 2847–2849

    Article  ADS  Google Scholar 

  54. Wald A. (1950). Statistical Decision Functions. John Wiley & Sons, New York

    MATH  Google Scholar 

  55. Yuen H., Kennedy R. and Lax M. (1975). Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inform. Theory 21: 125–134

    Article  MATH  MathSciNet  Google Scholar 

  56. Yuen H.P. and Lax M. (1973). Multiple-parameter quantum estimation and measurement of non-selfadjoint observables. IEEE Trans. Inform. Theory 19: 740

    Article  MATH  MathSciNet  Google Scholar 

  57. Zavatta A., Viciani S. and Bellini M. (2004). Quantum to classical transition with single-photon-added coherent states of light. Science 306: 660–662

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mădălin Guţă.

Additional information

Communicated by M.B. Ruskai

Dedicated to Slava Belavkin on the occasion of his 60th anniversary

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guţă, M., Jenčová, A. Local Asymptotic Normality in Quantum Statistics. Commun. Math. Phys. 276, 341–379 (2007). https://doi.org/10.1007/s00220-007-0340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0340-1

Keywords

Navigation