Skip to main content
Log in

Finite-Time Blow-up of Solutions of an Aggregation Equation in R n

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the aggregation equation \(u_t + \nabla \cdot(u \nabla K\,*\,u) = 0\) in R n, n ≥ 2, where K is a rotationally symmetric, nonnegative decaying kernel with a Lipschitz point at the origin, e.g. K(x) =  e −|x|. We prove finite-time blow-up of solutions from specific smooth initial data, for which the problem is known to have short time existence of smooth solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale J.T., Kato T. and Majda A.J. (1984). Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94: 61–66

    Article  MATH  ADS  Google Scholar 

  2. Bodnar M. and Velazquez J.J.L. (2006). An integro-differential equation arising as a limit of individual cell-based models. J. Differ. Eqs. 222(2): 341–380

    Article  MATH  Google Scholar 

  3. Brenner M.P., Constantin P., Kadanoff L.P., Schenkel A. and Venkataramani S.C. (1999). Diffusion, attraction, and collapse. Nonlinearity 12: 1071–1098

    Article  MATH  ADS  Google Scholar 

  4. Burger M., Capasso V. and Morale D. (2007). On an aggregation model with long and short range interactions. Nonlinear Analysis: Real World Applications 8(3): 939–958

    Article  Google Scholar 

  5. Burger, M., Di Francesco, M.: Large time behavior of nonlocal aggregation models with nonlinear diffusion. Preprint, 2006

  6. Chandrasekhar S. (1967). An introduction to the study of stellar structure. Dover, New York

    Google Scholar 

  7. Chuang, Y.-L., D’Orsogna, M.R., Marthaler, D., Bertozzi, A.L., Chayes, L.: State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Preprint, 2006

  8. Constantin P., Lax P.D. and Majda A. (1985). A simple one-dimensional model for the three-dimensional vorticity equation. Commun. Pure. Appl. Math. 38: 715–724

    Article  MATH  ADS  Google Scholar 

  9. Constantin P., Majda A. and Tabak E. (1994). Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7: 1495–1533

    Article  MATH  ADS  Google Scholar 

  10. Constantin P. (1994). Geometric statistics in turbulence. SIAM Review 36(1): 73–98

    Article  MATH  Google Scholar 

  11. D’Orsogna M.R., Chuang Y.-L., Bertozzi A.L. and Chayes L. (2006). Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96: 104302

    Article  ADS  Google Scholar 

  12. Ebeling W. and Erdmann U. (2003). Nonequilibrium statistical mechanics of swarms of driven particles. Complexity 8: 23–30

    Article  Google Scholar 

  13. Edelstein-Keshet L., Watmough J. and Grunbaum D. (1998). Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts. J. Math. Bio. 36: 515–549

    Article  MATH  Google Scholar 

  14. Flierl G., Grünbaum D., Levin S. and Olson D. (1999). From individuals to aggregations: the interplay between behavior and physics. J. Theor. Biol. 196: 397–454

    Article  Google Scholar 

  15. Holm D.D. and Putkaradze V. (2005). Aggregation of finite size particles with variable mobility. Phys. Rev. Lett. 95: 226106

    Article  ADS  Google Scholar 

  16. Holm, D.D., Putkaradze, V.: Clumps and patches in self-aggregation of finite size particles. Preprint, 2006

  17. Ju N. (2004). Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Commun. Math. Phys. 251: 365–376

    Article  MATH  ADS  Google Scholar 

  18. Keller E.F. and Segel L.A. (1970). J. Theor. Biol. 26: 399–415

    Article  Google Scholar 

  19. Laurent, T.: PhD thesis, Duke University, Department of Mathematics, 2006

  20. Laurent, T.: Local and global existence for an aggregation equation. Preprint 2006. to appear in Communications in PDE

  21. Levine H., Rappel W.J. and Cohen I. (2000). Self-organization in systems of self-propelled particles. Phys. Rev. E 63: 017101

    Article  ADS  Google Scholar 

  22. Majda A.J. and Bertozzi A.L. (2002). Vorticity and Incompressible Flow. University Press, Cambridge

    MATH  Google Scholar 

  23. Mogilner A. and Edelstein-Keshet L. (1999). A non-local model for a swarm. J. Math. Bio. 38: 534–570

    Article  MATH  Google Scholar 

  24. Parrish J. and Edelstein-Keshet L. (1999). Complexity, pattern and evolutionary trade-offs in animal aggregation. Science 294: 99–101

    Article  ADS  Google Scholar 

  25. Taylor M.E. (1996). Partial Differential Equations, Volume 3. Springer-Verlag, New York

    Google Scholar 

  26. Toner J. and Tu Y. (1995). Long-range order in a two-dimensional dynamical xy model: how birds fly together. Phys. Rev. Lett. 75: 4326–4329

    Article  ADS  Google Scholar 

  27. Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65(1), 152–174 (electronic) (2004)

    Google Scholar 

  28. Topaz C.M., Bertozzi A.L. and Lewis M.A. (2006). A nonlocal continuum model for biological aggregation. Bull. Math. Bio. 68(7): 1601–1623

    Article  Google Scholar 

  29. Vicsek T., Czirk A., Ben-Jacob E., Cohen I. and Shochet O. (1995). Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75: 1226–1229

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea L. Bertozzi.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertozzi, A.L., Laurent, T. Finite-Time Blow-up of Solutions of an Aggregation Equation in R n . Commun. Math. Phys. 274, 717–735 (2007). https://doi.org/10.1007/s00220-007-0288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0288-1

Keywords

Navigation