Skip to main content
Log in

The Manifold of Compatible Almost Complex Structures and Geometric Quantization

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Let (M, ω) be an integral symplectic manifold. We study a family of hermitian vector bundles on the space \({\mathcal{J}}\) of almost complex structures on M compatible with ω, whose fibers consist of nearly holomorphic sections of powers of a prequantum line bundle. We obtain asymptotics of the curvature of a natural connection in these bundles. These results, together with Toeplitz operator theory, provide another proof of Donaldson’s result that the action of HAM(M) on \({\mathcal{J}}\) is hamiltonian with moment map the scalar curvature. We also give an example involving Teichmüller space and discuss a relationship between parallel transport and the Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelrod S., de la Pietra S. and Witten E. (1991). Geometric quantization of Chern-Simons gauge theory. J. Diff. Geom. 33: 781–902

    Google Scholar 

  2. Bordemann M., Meinrenken E. and Schlichenmaier M. (1994). Toeplitz Quantization of Kähler Manifolds and gl(N), N → ∞ limits. Commun. Math. Phys. 165: 281–296

    Article  MATH  ADS  Google Scholar 

  3. Borthwick, D.: Introduction to Kähler quantization. In First Summer School in Analysis and Mathematical Physics (Cuernavaca Morelos, 1998), Contemp. Math. 260, Providence, RI: Amer. Math. Soc., 2000, pp. 91–132

  4. Borthwick D. and Uribe A. (2007). The semiclassical structure of low-energy states in the presence of a magnetic field. to appear in Trans. AMS 359: 1875–1888

    Article  MATH  Google Scholar 

  5. Boutet de Monvel, L., Guillemin, V.: The spectral theory of Toeplitz operators. Annals of Mathematics Studies No. 99, Princeton, NJ: Princeton University Press (1981)

  6. Charles, L.: Semi-classical properties of geometric quantization with metaplectic correction. http://arxiv.org/list/math.SG/0602168, 2006

  7. Daubechies I. (1980). Coherent states and projective representation of the linear canonical transformations. J. Math. Phys. 21(6): 1377–1389

    Article  MATH  ADS  Google Scholar 

  8. Donaldson, S.: Remarks on gauge theory, complex geometry and 4-manifold topology. In: Fields Medallists’ lectures, World Sci. Ser. 20th Century Math. 5, River Edge, NJ: World Sci. Publishing, 1997, pp. 384–403

  9. Donaldson S. (2001). Scalar curvature and projective embeddings. I. J. Diffe. Geom. 59(3): 479–522

    MATH  Google Scholar 

  10. Epstein C. and Melrose R. (1998). Contact degree and the index of Fourier integral operators. Math. Res. Lett. 5(3): 363–381

    MATH  Google Scholar 

  11. Ginzburg, V., Montgomery, R.: Geometric quantization and no-go theorems. In: Poisson geometry (Warsaw, 1998), Banach Center Publ. 51, Warsaw: Polish Acad. Sci., 2000, pp. 69–77

  12. Guillemin V. and Uribe A. (1988). The Laplace operator on the nth tensor power of a line bundle: eigenvalues which are uniformly bounded in n. Asymptotic Analysis 1: 105–113

    MATH  Google Scholar 

  13. Helgason S. (1962). Differential geometry and symmetric spaces. Academic Press, New York

    MATH  Google Scholar 

  14. Jost J. (1991). Harmonic maps and curvature computations in Teichmüller theory. Ann. Acad. Sci. Fen., Ser. A. I. Math. 16: 13–46

    MATH  Google Scholar 

  15. Kirwin, W., Wu, S.: Geometric Quantization, Parallel Transport and the Fourier Transform. http://arxiv.org/list/math.SG/0409555, 2004

  16. Zhiqin Lu. (2000). On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Amer. J. Math. 122(2): 235–273

    MATH  Google Scholar 

  17. Ma X. and Marinescu G. (2002). The Spinc Dirac operator on high tensor powers of a line bundle. Math Z. 240(3): 651–664

    Article  MATH  Google Scholar 

  18. Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds. C. R. Math. Acad. Sci. Paris 339(7), 493–498. (2004) Announced in: Available at http://arixv.org/list/math.DG/0411559, 2004

  19. Viña A. (2000). Identification of Kähler quantizations and the Berry phase. J. Geom. Phys. 36(3–4): 223–250

    Article  MATH  Google Scholar 

  20. Wolf M. (1989). The Teichmüller theory of harmonic maps. J. Diff. Geom. 29: 449–479

    MATH  Google Scholar 

  21. Zelditch S. (1997). Index and dynamics of quantized contact transformations. Ann. Inst. Fourier 47(1): 305–363

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Uribe.

Additional information

Communicated by P. Sarnak

T.F. supported in part by NSF grant DMS-0204154 and by NSERC.

A.U. supported in part by NSF grant DMS-0070690 and DMS-0401064.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foth, T., Uribe, A. The Manifold of Compatible Almost Complex Structures and Geometric Quantization. Commun. Math. Phys. 274, 357–379 (2007). https://doi.org/10.1007/s00220-007-0280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0280-9

Keywords

Navigation