Skip to main content
Log in

Algebro-Geometric Approach in the Theory of Integrable Hydrodynamic Type Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The algebro-geometric approach for integrability of semi-Hamiltonian hydrodynamic type systems is presented. The class of symmetric hydrodynamic type systems is defined and the calculation of the associated Riemann surfaces is greatly simplified for this class. Many interesting and physically motivated examples are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benney D.J. (1973). Some properties of long non-linear waves. Stud. Appl. Math. 52: 45–50

    Google Scholar 

  2. Bogdanov L.V. and Konopelchenko B.G. (2004). Symmetry constraints for dispersionless integrable equations and systems of hydrodynamic type. Phys. Lett. A 330: 448–459

    Article  ADS  MathSciNet  Google Scholar 

  3. Brunelli J.C. and Das A. (1997). A Lax description for polytropic gas dynamics. Phys. Lett. A 235(6): 597–602

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Darboux, G.: Leçons sur les systèmes orthogonaux et les coordonnées curvilignes. Paris: Gauthier- Villars, 1910

  5. Dubrovin, B.A.: Hamiltonian formalism of Whitham-type hierarchies and topological Landau-Ginsburg models. Commun. Math. Phys. 145, 195–207 (1992). Dubrovin, B.A.: Geometry of 2D topological field theories. Lecture Notes in Math. 1620, Berlin-Heidelberg Newyork: Springer-Verlag, pp.120–348 (1996)

  6. Dubrovin, B.A., Novikov, S.P.: Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method. Soviet Math. Dokl. 27, 665–669 (1983); Dubrovin, B.A., Novikov S.P.: Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Russ. Math. Surv. 44(6), 35–124 (1989)

    Google Scholar 

  7. Ferapontov E.V. (1995). Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications. Amer. Math. Soc. Transl. (2) 170: 33–58

    MathSciNet  Google Scholar 

  8. Ferapontov, E.V., Khusnutdinova, K.R.: On integrability of (2+1)-dimensional quasilinear systems. Commun. Math. Phys. 248, 187–206 (2004); Ferapontov, E.V., Khusnutdinova, K.R.: The characterization of 2-component (2+1)-dimensional integrable systems of hydrodynamic type. J. Phys. A: Math. Gen. 37(8), 2949–2963 (2004)

    Google Scholar 

  9. Ferapontov E.V. and Mokhov O.I. (1990). Nonlocal Hamiltonian operators of hydrodynamic type that are connected with metrics of constant curvature. Russian Math. Surv 45(3): 218–219

    Article  MATH  MathSciNet  Google Scholar 

  10. Ferapontov E.V. and Tsarev S.P. (1991). Systems of hydrodynamic type that arise in gas chromatographyRiemann invariants and exact solutions.(Russian). Mat. Model. 3(2): 82–91

    MathSciNet  Google Scholar 

  11. Flaschka H., Forest M.G. and McLaughlin D.W. (1980). Multi-phase averaging and the inverse spectral solution of the Korteweg - de Vries equation. Commun. Pure Appl. Math. 33(6): 739–784

    MATH  ADS  MathSciNet  Google Scholar 

  12. Forest M.G. and McLaughlin D.W. (1983). Modulations of sinh-Gordon and sine-Gordon wavetrains. Stud. Appl. Math. 68(1): 11–59

    MATH  MathSciNet  Google Scholar 

  13. Gibbons J. (1981). Collisionless Boltzmann equations and integrable moment equations. Physica D 3: 503–511

    Article  ADS  MathSciNet  Google Scholar 

  14. Gibbons, J., Kodama, Yu.: Solving dispersionless Lax equations. In: N. Ercolani et~al., editor, Singular limits of dispersive waves, V. 320 of NATO ASI Series B, New York, Plenum 1994 p. 61

  15. Gibbons, J., Tsarev, S.P.: Reductions of the Benney equations. Phys. Lett. A 211 19–24 (1996); Gibbons, J., Tsarev, S.P.: Conformal maps and reductions of the Benney equations. Phys. Lett. A 258, 263–271 (1999)

    Google Scholar 

  16. Gibbons, J., Yu, L.A.: The initial value problem for reductions of the Benney equations, Inverse Problems 16(3), 605–618 (2000); Yu, L.A.: Waterbag reductions of the dispersionless discrete KP hierarchy. J. Phys. A: Math. Gen. 33, 8127–8138 (2000)

    Google Scholar 

  17. Haantjes J.K (1955). On X m-1-forming sets of eigenvectors. Indagationes Mathematicae 17: 158–162

    MathSciNet  Google Scholar 

  18. Kodama, Yu.: A method for solving the dispersionless KP equation and its exact solutions. Phys. Lett. A 129(4), 223–226 (1988); Kodama, Yu.: A solution method for the dispersionless KP equation. Prog. Theor. Phys. Supplement. 94, 184 (1988)

    Google Scholar 

  19. Kozlov, V.V.: Polynomial integrals of dynamical systems with one-and-a-half degrees of freedom. (Russian) Mat. Zametki 45(4), 46–52 (1989); translation in Math. Notes 45(3–4), 296–300 (1989)

  20. Krichever, I.M.: The averaging method for two-dimensional “integrable” equations, Funct. Anal. Appl. 22(3), 200–213 (1988); Krichever, I.M.: Spectral thery of two-dimensional periodic operators and its applications. Russ.1 Math. Surv. 44(2), 145–225 (1989)

    Google Scholar 

  21. Krichever, I.M.: The dispersionless equations and topological minimal models. Commun. Math. Phys. 143(2), 415–429 (1992). Krichever, I.M.: The τ-function of the universal Whitham hierarchy, matrix models and topological field theories. Commun. Pure Appl. Math. 47, 437–475 (1994)

    Google Scholar 

  22. Kupershmidt, B.A.: Deformations of integrable systems. Proc. Roy. Irish Acad. Sect. A 83(1), 45–74 (1983); Kupershmidt, B.A.: Normal and universal forms in integrable hydrodynamical systems. In: Proceedings of the Berkeley-Ames conference on nonlinear problems in control and fluid dynamics (Berkeley, Calif., 1983), in Lie Groups: Hist., Frontiers and Appl. Ser. B: Systems Inform. Control, II, Brookline, MA: Math Sci Press, 1984 pp. 357–378

  23. Kupershmidt B.A (2006). Hydrodynamic chains of Pavlov class. Phys. Lett. A 356: 115–118

    Article  ADS  Google Scholar 

  24. Lavrentiev, M.A., Shabat, B.V.: Metody teorii funktsii kompleksnogo peremennogo(Russian) [Methods of the theory of functions of a complex variable] Third corrected edition Izdat. “Nauka”, Moscow (1965) 716 pp; P. Henrici. Topics in computational complex analysis. IV. The Lagrange-Bürmann formula for systems of formal power series. Computational aspects of complex analysis (Braunlage, 1982), NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci. 102, Dordrecht; Reidel, 1983, pp.193–215

  25. Mokhov, O.I.: Compatible nonlocal Poisson brackets of hydrodynamic type and related integrable hierarchies. (Russian) Teoret. Mat. Fiz. 132 (1), 60–73 (2002); translation in Theoret. and Math. Phys. 132(1), 942–954 (2002); Mokhov, O.I.: The Liouville canonical form of compatible nonlocal Poisson brackets of hydrodynamic type, and integrable hierarchies. (Russian) Funktsional. Anal. i Prilozhen. 37(2), 28–40 (2003); translation in Funct. Anal. Appl. 37(2), 103–113 (2003)

  26. Pavlov, M.V.: Integrable systems and metrics of constant curvature. J Nonlinear Math. Phys. No. 9, Supplement 1, 173–191 (2002)

    Google Scholar 

  27. Pavlov M.V. (2003). Integrable hydrodynamic chains. J. Math. Phys. 44(9): 4134–4156

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Pavlov M.V. The Kupershmidt hydrodynamic chains and lattices. IMRN, pp 1–43 (2006)

  29. Pavlov, M.V., Svinolupov, S.I., Sharipov, R.A.: An invariant criterion for hydrodynamic integrability, Funktsional. Anal. i Prilozhen. 30, 18–29 (1996); translation in Funct. Anal. Appl. 30, 15–22 (1996)

    Google Scholar 

  30. Pavlov, M.V., Tsarev, S.P.: Three-Hamiltonian structures of the Egorov hydrodynamic type systems. Funct. Anal. Appl. 37(1), 32–45 (2003)

    Google Scholar 

  31. Rogers C. and Shadwick W.F. (1982). Bäcklund Transformations and their Applications. Academic Press, New York

    MATH  Google Scholar 

  32. Rozhdestvenski, B.L., Yanenko, N.N.: Systems of quasilinear equations and their applications to gas dynamics. Translated from the second Russian edition by J. R. Schulenberger. Translations of Mathematical Monographs 55. Providence, RC Amer. Math. Soc., 1983; Russian ed., Moscow: Nauka, 1968

  33. Tsarev, S.P.: On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type. Soviet Math. Dokl. 31, 488–491 (1985); Tsarev, S.P.: The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method. Math. USSR Izvestiya 37(2), 397–419 (1991)

    Google Scholar 

  34. Tsarev, S.P.: Private communications, 1985

  35. Whitham G.B. (1974). Linear and Nonlinear Waves. Wiley–Interscience, New York

    MATH  Google Scholar 

  36. Zakharov, V.E.: Benney’s equations and quasi-classical approximation in the inverse problem method. Funct. Anal. Appl. 14(2), 89–98 (1980); V.E. Zakharov,: On the Benney’s Equations. Physica D 3, 193–202 (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim V. Pavlov.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlov, M.V. Algebro-Geometric Approach in the Theory of Integrable Hydrodynamic Type Systems. Commun. Math. Phys. 272, 469–505 (2007). https://doi.org/10.1007/s00220-007-0235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0235-1

Keywords

Navigation