Skip to main content
Log in

Approximating Multi-Dimensional Hamiltonian Flows by Billiards

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The behavior of a point particle traveling with a constant speed in a region \(D\subset R^{N}\) , undergoing elastic collisions at the regions’s boundary, is known as the billiard problem. Various billiard models serve as approximation to the classical and semi-classical motion in systems with steep potentials (e.g. for studying classical molecular dynamics, cold atom’s motion in dark optical traps and microwave dynamics). Here we develop methodologies for examining the validity and accuracy of this approximation. We consider families of smooth potentials \(V_\epsilon\) , that, in the limit \(\epsilon\rightarrow0\) , become singular hard-wall potentials of multi-dimensional billiards. We define auxiliary billiard domains that asymptote, as \(\epsilon\rightarrow0\) to the original billiards, and provide, for regular trajectories, asymptotic expansion of the smooth Hamiltonian solution in terms of these billiard approximations. The asymptotic expansion includes error estimates in the C r norm and an iteration scheme for improving this approximation. Applying this theory to smooth potentials that limit to the multi-dimensional close to ellipsoidal billiards, we predict when the billiard’s separatrix splitting (which appears, for example, in the nearly flat and nearly oblate ellipsoids) persists for various types of potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldwin P.R. (1988). Soft billiard systems. Phys. D 29(3): 321–342

    Article  MATH  MathSciNet  Google Scholar 

  2. Bálint P., Chernov N., Szász D. and Tóth I. (2003). Geometry of multi-dimensional dispersing billiards. Astérisque 286: 119–150

    Google Scholar 

  3. Bálint P. and Tóth I.P. (2004). Mixing and its rate in ‘soft’ and ‘hard’ billiards motivated by the Lorentz process. Phys. D 187(1–4): 128–135

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bálint P. and Tóth I.P. (2006). Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards. Discrete Contin. Dyn. Syst. 15(1): 37–59

    Article  MATH  MathSciNet  Google Scholar 

  5. Birkhoff, G.D.: Dynamical systems. Amer. Math. Soc. Colloq. Publ. 9, New York: Amer. Math. Soc., 1927

  6. Bolotin S., Delshams A. and Ramírez-Ros R. (2004). Persistence of homoclinic orbits for billiards and twist maps. Nonlinearity 17(4): 1153–1177

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bunimovich L.A. (1979). On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys. 65(3): 295–312

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Bunimovich L.A. and Rehacek J. (1997). Nowhere dispersing 3D billiards with non-vanishing Lyapunov exponents. Commun. Math. Phys. 189(3): 729–757

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Bunimovich L.A. and Rehacek J. (1998). How high-dimensional stadia look like. Commun. Math. Phys. 197(2): 277–301

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Bunimovich L.A. and Rehacek J. (1998). On the ergodicity of many-dimensional focusing billiards. Ann. Inst. H. Poincaré Phys. Théor. 68(4): 421–448

    MATH  MathSciNet  Google Scholar 

  11. Bunimovich L.A. and Del Magno G. (2006). Semi-focusing billiards: hyperbolicity. Commun. Math. Phys. 262(1): 17–32

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Chen Y-C. (2004). Anti-integrability in scattering billiards. Dyn. Syst. 19(2): 145–159

    MATH  MathSciNet  Google Scholar 

  13. Chernov, N., Markarian, R.: Introduction to the ergodic theory of chaotic billiards. Second ed., Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2003, 24o Colóquio Brasileiro de Matemática. [24th Brazilian Mathematics Colloquium]

  14. Delshams A., Fedorov Yu. and Ramírez-Ros R. (2001). Homoclinic billiard orbits inside symmetrically perturbed ellipsoids. Nonlinearity 14(5): 1141–1195

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Delshams A. and Ramírez-Ros R. (1996). Poincaré-Melnikov-Arnold method for analytic planar maps. Nonlinearity 9: 1–26

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Delshams A. and Ramírez-Ros R. (1997). Melnikov potential for exact symplectic maps. Commun. Math. Phys. 190(1): 213–245

    Article  MATH  ADS  Google Scholar 

  17. Donnay V.J. (1996). Elliptic islands in generalized Sinai billiards. Ergod. Th. & Dynam. Sys. 16: 975–1010

    MATH  MathSciNet  Google Scholar 

  18. Donnay V.J. (1999). Non-ergodicity of two particles interacting via a smooth potential. J. Stat. Phys. 96(5–6): 1021–1048

    Article  MATH  MathSciNet  Google Scholar 

  19. Donnay V.J. and Liverani C. (1991). Potentials on the two-torus for which the Hamiltonian flow is ergodic. Commun. Math. Phys. 135: 267–302

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Dragović V. and Radnović M. (2004). Cayley-type conditions for billiards within k quadrics in \({\mathbb{R}}^d\) J. Phys. A 37(4): 1269–1276

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Guckenheimer J. and Holmes P. (1983). Non-linear oscillations, dynamical systems and bifurcations of vector fields. Springer-Verlag, New York, NY

    Google Scholar 

  22. Gutzwiller M.C. (1990). Chaos in classical and quantum mechanics. Springer-Verlag, New York, NY

    MATH  Google Scholar 

  23. Hale, J.K.: Ordinary differential equations. Second ed., Huntington, NY: Robert E. Krieger Publishing Co. Inc., 1980

  24. Kaplan, A., Friedman, N., Andersen, M., Davidson, N.: Observation of islands of stability in soft wall atom-optics billiards. Phy. Rev. Lett. 87(27) 274101–1–4 (2001)

    Google Scholar 

  25. Knauf A. (1989). On soft billiard systems. Phys. D 36(3): 259–262

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Kozlov, V.V., Treshchëv, D.V.: Billiards: A genetic introduction to the dynamics of systems with impacts. Providence, RI: Amer. Math. Soc. 1991 (Translated from the Russian by J. R. Schulenberger)

  27. Krámli A., Simányi N. and Szász D. (1989). Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus. Nonlinearity 2(2): 311–326

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Krámli A., Simányi N. and Szász D. (1990). A “transversal” fundamental theorem for semi-dispersing billiards. Commun. Math. Phys. 129(3): 535–560

    Article  MATH  ADS  Google Scholar 

  29. Krámli, A., Simányi, N., Szász, D.: The K-property of three billiard balls. Ann. of Math. (2) 133(1), 37–72 (1991)

    Google Scholar 

  30. Krámli A., Simányi N. and Szász D. (1992). The K-property of four billiard balls. Commun. Math. Phys. 144(1): 107–148

    Article  MATH  ADS  Google Scholar 

  31. Krylov, N.S.: Works on the foundations of statistical physics. Princeton, NJ: Princeton University Press, 1979. Translated from the Russian by A. B. Migdal, Ya. G. Sinai [Ja. G. Sinaǐ], Yu. L. Zeeman [Ju. L. Zeeman], with a preface by A. S. Wightman, with a biography of Krylov by V. A. Fock [V. A. Fok], with an introductory article “The views of N. S. Krylov on the foundations of statistical physics” by Migdal and Fok, with a supplementary article “Development of Krylov’s ideas” by Sinaǐ, Princeton Series in Physics

  32. Kubo I. (1976). Perturbed billiard systems. I. The ergodicity of the motion of a particle in a compound central field. Nagoya Math. J. 61: 1–57

    MATH  MathSciNet  Google Scholar 

  33. Kubo I. and Murata H. (1981). Perturbed billiard systems II. Bernoulli properties. Nagoya Math. J. 81: 1–25

    MATH  MathSciNet  Google Scholar 

  34. Lerman, L.M., Umanskiy, Ya.L.: Four-dimensional integrable Hamiltonian systems with simple singular points (topological aspects). Translations of Mathematical Monographs, Vol. 176, Providence, RI: Amer. Math. Soc. 1998. Translated from the Russian manuscript by A. Kononenko and A. Semenovich

  35. Markarian R. (1992). Ergodic properties of plane billiards with symmetric potentials. Commun. Math. Phys. 145(3): 435–446

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Markarian R. (2004). Billiards with polynomial decay of correlations. Ergodic Theory Dynam. Systems 24(1): 177–197

    Article  MATH  MathSciNet  Google Scholar 

  37. Marsden J.E. (1967/1968). Generalized Hamiltonian mechanics: A mathematical exposition of non-smooth dynamical systems and classical Hamiltonian mechanics. Arch. Rational Mech. Anal. 28: 323–361

    ADS  MathSciNet  Google Scholar 

  38. Marsden J.E. and West M. (2001). Discrete mechanics and variational integrators. Acta Numer. 10: 357–514

    Article  MATH  MathSciNet  Google Scholar 

  39. Papenbrock T. (2000). Numerical study of a three-dimensional generalized stadium billiard. Phys. Rev. E 61(1, 4626–4628): 61–1, 46264628

    Google Scholar 

  40. Primack H. and Smilansky U. (2000). The quantum three-dimensional Sinai billiard—a semiclassical analysis. Phys. Rep. 327(1–2): 107

    MathSciNet  Google Scholar 

  41. Rapoport A. and Rom-Kedar V. (2006). Non-ergodicity of the motion in three-dimensional steep repelling dispersing potentials. Chaos 16(4): 043108

    Article  MathSciNet  ADS  Google Scholar 

  42. Rapoport, A., Rom-Kedar, V., Turaev, D.: Stability in high dimensional steep repelling potentials (submitted, preprint, 2007)

  43. Rom-Kedar V. and Turaev D. (1999). Big islands in dispersing billiard-like potentials. Physica D 130: 187–210

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of qualitative theory in nonlinear dynamics. Part I. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, Vol. 4, River Edge, NJ: World Scientific Publishing Co. Inc., 1988

  45. Simányi N. (1992). The K-property of N billiard balls. I. Invent. Math. 108(3): 521–548

    MATH  MathSciNet  Google Scholar 

  46. Simányi N. (1992). The K-property of N billiard balls. II. Computation of neutral linear spaces. Invent. Math. 110(1): 151–172

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Simányi N. (2004). Proof of the ergodic hypothesis for typical hard ball systems. Ann. Henri Poincaré 5(2): 203–233

    Article  MATH  Google Scholar 

  48. Simányi N. and Szász D. (1999). Hard ball systems are completely hyperbolic. Ann. of Math. (2) 149(1): 35–96

    Article  MATH  MathSciNet  Google Scholar 

  49. Sinai Ya.G. (1963). On the foundations of the ergodic hypothesis for dynamical system of statistical mechanics. Dokl. Akad. Nauk. SSSR 153: 1261–1264

    Google Scholar 

  50. Sinai Ya.G. (1970). Dynamical systems with elastic reflections: Ergodic properties of scattering billiards. Russ. Math. Sur. 25(1): 137–189

    Article  MATH  Google Scholar 

  51. Sinai, Ya.G., Chernov, N.I., Ergodic properties of some systems of two-dimensional disks and three-dimensional balls. Usp. Mat. Nauk 42(3)(255), 153–174, 256 (1987) (in Russian)

    Google Scholar 

  52. Smilansky, U.: Semiclassical quantization of chaotic billiards - a scattering approach, Proceedings of the 1994 Les-Houches Summer School on “Mesoscopic quantum Physics” A. Akkermans, G. Montambaux, J.L. Pichard, eds., Amsterdam: North Holland, 1995

  53. Szász D. (1996). Boltzmann’s ergodic hypothesis, a conjecture for centuries? Studia Sci. Math. Hungar. 31(1–3): 299–322

    MATH  Google Scholar 

  54. Szasz, D. (ed.): Hard ball systems and the lorentz gas, Encyclopaedia of Mathematical Sciences, Vol. 101, New York, NY: Springer-Verlag, 2000

  55. Tabachnikov, S.: Billiards. Panor. Synth. 1, vi+142 (1995)

  56. Turaev D. and Rom-Kedar V. (1998). Islands appearing in near-ergodic flows. Nonlinearity 11(3): 575–600

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. Turaev D. and Rom-Kedar V. (2003). Soft billiards with corners. J. Stat. Phys. 112(3–4): 765–813

    Article  MATH  MathSciNet  Google Scholar 

  58. Veselov, A.P.: Integrable mappings. Usp. Mat. Nauk 46(5(281)), 3–45, 190 (1991)

  59. Wojtkowski M. (1990). Linearly stable orbits in 3-dimensional billiards. Commun. Math. Phys. 129(2): 319–327

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. Young, L-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. (2) 147(3), 585–650 (1998)

    Google Scholar 

  61. Zaslavsky G.M. and Strauss H.R. (1992). Billiard in a barrel. Chaos 2(4): 469–472

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rapoport.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapoport, A., Rom-Kedar, V. & Turaev, D. Approximating Multi-Dimensional Hamiltonian Flows by Billiards. Commun. Math. Phys. 272, 567–600 (2007). https://doi.org/10.1007/s00220-007-0228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0228-0

Keywords

Navigation