Skip to main content
Log in

On Genus Two Riemann Surfaces Formed from Sewn Tori

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe the period matrix and other data on a higher genus Riemann surface in terms of data coming from lower genus surfaces via an explicit sewing procedure. We consider in detail the construction of a genus two Riemann surface by either sewing two punctured tori together or by sewing a twice-punctured torus to itself. In each case the genus two period matrix is explicitly described as a holomorphic map from a suitable domain (parameterized by genus one moduli and sewing parameters) to the Siegel upper half plane \({\mathbb{H}_{2}}\) . Equivariance of these maps under certain subgroups of \({Sp(4,\mathbb{Z})}\) is shown. The invertibility of both maps in a particular domain of \({\mathbb{H}_{2}}\) is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Hoker E., Gutperle M. and Phong D.H. (2005). Two-loop superstrings and S-duality. Nucl. Phys. B 722: 81–118

    ADS  MathSciNet  MATH  Google Scholar 

  2. Dong C., Li H. and Mason G. (1997). Regularity of rational vertex operator algebras. Adv. Math. 132(1): 148–166

    Article  MathSciNet  MATH  Google Scholar 

  3. Dong C. and Mason G. (2004). Rational vertex operator algebras and the effective central charge. Int. Math. Res. Not. No. 56: 2989–3008

    Article  MathSciNet  Google Scholar 

  4. Dong C. and Mason G. (2004). Holomorphic vertex operator algebras of small central charge. Pac. J. Math. 213(2): 253–266

    Article  MathSciNet  MATH  Google Scholar 

  5. D’Hoker E. and Phong D.H. (1988). The geometry of string perturbation theory. Rev. Mod. Phys. 60: 917–1065

    Article  ADS  MathSciNet  Google Scholar 

  6. D’Hoker E. and Phong D.H. (2002). Two-loop superstrings. I: Main formulas. Phys. Lett. B 529: 241–255

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. D’Hoker E. and Phong D.H. (2005). Two-loop superstrings. VI: Non-renormalization theorems and the 4-point function. Nucl. Phys. B 715: 3–90

    Article  ADS  MathSciNet  Google Scholar 

  8. Eichler M and Zagier D (1985). The Theory of Jacobi Forms. Birkhäuser, Boston

    MATH  Google Scholar 

  9. Farkas HM and Kra I (1980). Riemann Surfaces. Springer-Verlag, New York

    MATH  Google Scholar 

  10. Farkas, H.M., Kra, I.: Theta Constants, Riemann Surfaces and the Modular Group. Graduate Studies in Mathematics, Providence, RI: Amer. Math. Soc. 2001

  11. Green M., Schwartz J. and Witten E. (1987). Superstring Theory Vol. 1. Cambridge University Press, Cambridge

    Google Scholar 

  12. Gunning R.C. (1990). Introduction to Holomorphic Functions of Several Variables Vol 1. Belmont, CA, Wadsworth & Brooks/Cole

    Google Scholar 

  13. Huang Y (1997). Two-Dimensional Conformal Geometry and Vertex Operator Algebras. Birkhäuser, Boston

    MATH  Google Scholar 

  14. Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: The Moduli Space of Curves (Texel Island, 1994), Progr. in Math. 129, Boston: Birkhauser, 1995

  15. Moore G. and Seiberg N. (1989). Classical and quantum conformal field theory. Commun. Math. Phys. 123: 177–254

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Mason G. and Tuite M.P. (2003). Torus chiral n-point functions for free boson and lattice vertex operator algebras. Commun. Math. Phys. 235: 47–68

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Mason, G., Tuite, M.P.: The genus two partition function for free bosonic and lattice vertex operator algebras. To appear

  18. Mumford D. (1983). Tata Lectures on Theta I and II. Birkhäuser, Boston

    Google Scholar 

  19. Polchinski J. (1998). String Theory, Volume I. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  20. Serre J-P. (1978) A Course in Arithmetic. Berlin, Springer-Verlag

    MATH  Google Scholar 

  21. Stanley R.P. (1999). Enumerative Combinatorics, Volume 2. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  22. Sonoda, H.: Sewing conformal field theories I. Nucl. Phys. B311, 401–416 (1988); Sewing conformal field theories II. Nucl. Phys. B311, 417–432 (1988)

    Google Scholar 

  23. Springer G. (1957). Introduction to Riemann Surfaces. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  24. Tuite, M.P: Genus two meromorphic conformal field theory, CRM Proceedings and Lecture Notes 30, Providence, RI: Amet. Math. Soc., 2001, pp. 231–251

  25. Verlinde E.P. and Verlinde H.L. (1987). Chiral bosonization, determinants and the string partition function. Nucl. Phys. B 288: 357–396

    Article  ADS  MathSciNet  Google Scholar 

  26. Yamada A. (1980). Precise variational formulas for abelian differentials. Kodai Math. J. 3: 114–143

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu Y. (1996). Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9: 237–302

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Mason.

Additional information

Communicated by Y. Kawahigashi

Support provided by the National Science Foundation DMS-0245225, and the Committee on Research at the University of California, Santa Cruz.

Supported by The Millenium Fund, National University of Ireland, Galway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, G., Tuite, M.P. On Genus Two Riemann Surfaces Formed from Sewn Tori. Commun. Math. Phys. 270, 587–634 (2007). https://doi.org/10.1007/s00220-006-0163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0163-5

Keywords

Navigation