Skip to main content
Log in

On the Lagrangian Dynamics for the 3D Incompressible Euler Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the dynamical behaviors along the particle trajectories for some quantities of the 3D inviscid incompressible fluids. We construct evolution equations satisfied by scalar quantities composed of spectrum of the deformation tensor, the hessian of the pressure and the direction field of the vorticity, and study the dichotomy between the finite time singularity and the long time behaviors of the various scalar quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale J.T., Kato T., Majda A. (1984) Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Chae, D.: Nonexistence of self-similar singularities for the 3D incompressible Euler equations. http:// arxiv.org/list/ math.AP/0601060, 2006; http://arxiv.org/list/ math.AP/0601661, 2006

  3. Chae D. (2006) On the finite time singularities of the 3D incompressible Euler equations. Comm. Pure Appl. Math. 109, 0001–0021

    Google Scholar 

  4. Chae D. (2006) On the spectral dynamics of the deformation tensor and new a priori estimates for the 3D Euler equations. Commun. Math. Phys. 263(3): 789–801

    Article  MathSciNet  ADS  Google Scholar 

  5. Chae D. (2005) Remarks on the blow-up criterion of the 3D Euler equations. Nonlinearity, 18, 1021–1029

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Chae D. (2004) Local existence and blow-up criterion for the Euler equations in the besov spaces. Asymp. Anal. 38(3-4): 339–358

    MATH  MathSciNet  Google Scholar 

  7. Chae D. (2002) On the well-posedness of the euler equations in the Triebel-Lizorkin Spaces. Comm. Pure Appl. Math. 55, 654–678

    Article  MATH  MathSciNet  Google Scholar 

  8. Chemin J.-Y. (1998) Perfect incompressible fluids. Oxford, Clarendon Press

    MATH  Google Scholar 

  9. Constantin P. (1994) Geometric statistics in turbulence. SIAM Rev. 36, 73–98

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantin P., Fefferman C., Majda A. (1996) Geometric constraints on potential singularity formulation in the 3-D Euler equations. Comm. P.D.E, 21(3-4): 559–571

    MATH  MathSciNet  Google Scholar 

  11. Córdoba D., Fefferman C. (2001) On the collapse of tubes carried by 3D incompressible flows. Comm. Math. Phys., 222(2): 293–298

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Deng J., Hou T.Y., Yu X. (2005) Geometric and Nonblowup of 3D incompressible Euler flow. Comm. P.D.E. 30, 225–243

    Article  MATH  MathSciNet  Google Scholar 

  13. Euler L. (1755) Opera omnia. Series Secunda 12, 274–361

    Google Scholar 

  14. Grauer R., Sideris T. (1991) Numerical computation of three dimensional incompressible ideal fluids with swirl. Phys. Rev. Lett. 67, 3511–3514

    Article  ADS  Google Scholar 

  15. Grauer R., Sideris T. (1995) Finite time singularities in ideal fluids with swirl. Phys. D 88(2): 116–132

    Article  MATH  MathSciNet  Google Scholar 

  16. Kato T. (1972) Nonstationary flows of viscous and ideal fluids in \(\mathbb{R}^3\). J. Funct. Anal. 9, 296–305

    Article  MATH  Google Scholar 

  17. Kerr R. (1993) Evidence for a singularity of the 3-dimensional, incompressible Euler equations. Phys. Fluids A 5, 1725–1746

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Kozono H., Ogawa T., Taniuchi Y. (2002) The Critical sobolev inequalities in besov spaces and regularity criterion to some semilinear evolution equations. Math. Z. 242, 251–278

    Article  MATH  MathSciNet  Google Scholar 

  19. Kozono H., Taniuchi Y. (2000) Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations. Commun. Math. Phys. 214, 191–200

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Liu H., Tadmor E. (2002) Spectral dyanamics of the velocity gradient field in restricted flows. Commun. Math. Phys. 228, 435–466

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Majda A. (1991) Vorticity, turbulence and acoustics in fluid flow. SIAM Rev. 33, 349–388

    Article  MATH  MathSciNet  Google Scholar 

  22. Majda A., Bertozzi A. (2002) Vorticity and Incompressible Flow. Cambridge, Cambridge Univ. Press

    MATH  Google Scholar 

  23. Temam R. (1975) On the Euler equations of incompressible flows. J. Funct. Anal. 20, 32–43

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongho Chae.

Additional information

Communicated by P. Constantin

The work was supported partially by the KOSEF Grant no. R01-2005-000-10077-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chae, D. On the Lagrangian Dynamics for the 3D Incompressible Euler Equations. Commun. Math. Phys. 269, 557–569 (2007). https://doi.org/10.1007/s00220-006-0129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0129-7

Keywords

Navigation