Skip to main content
Log in

The Cohomology Algebra of the Semi-Infinite Weil Complex

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In 1993, Lian-Zuckerman constructed two cohomology operations on the BRST complex of a conformal vertex algebra with central charge 26. They gave explicit generators and relations for the cohomology algebra equipped with these operations in the case of the c  =  1 model. In this paper, we describe another such example, namely, the semi-infinite Weil complex of the Virasoro algebra. The semi-infinite Weil complex of a tame \(\mathbb{Z}\)-graded Lie algebra was defined in 1991 by Feigin-Frenkel, and they computed the linear structure of its cohomology in the case of the Virasoro algebra. We build on this result by giving an explicit generator for each non-zero cohomology class, and describing all algebraic relations in the sense of Lian-Zuckerman, among these generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akman F. (1993) A characterization of the differential in semi-infinite cohomology. J. Alg. 162(1): 194–209

    Article  MATH  MathSciNet  Google Scholar 

  2. Borcherds R. (1986) Vertex operator algebras, Kac-Moody algebras and the Monster. Proc. Nat. Acad. Sci. USA 83, 3068–3071

    Article  ADS  MathSciNet  Google Scholar 

  3. Feigin B. (1984) The semi-infinite homology of Lie, Kac-Moody and Virasoro algebras. Russ. Math. Surv. 39(2): 195–196

    Article  MathSciNet  Google Scholar 

  4. Feigin B., Frenkel E. (1991) Semi-Infinite Weil complex and the Virasoro algebra. Commun. Math. Phys. 137, 617–639

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Feigin B., Frenkel E. (1992) Determinant formula for the free field representations of the Virasoro and Kac-Moody algebras. Phys. Lett. B 286, 71–77

    Article  ADS  MathSciNet  Google Scholar 

  6. Frenkel I.B., Huang Y.Z., Lepowsky J. On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104(494), viii+64 (1993)

  7. Frenkel I.B., Garland H., Zuckerman G.J. (1986) Semi-infinite cohomology and string theory. Proc. Natl. Acad. Sci. USA 83(22): 8442–8446

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Frenkel I.B., Lepowsky J., Meurman A., (1988) Vertex Operator Algebras and the Monster. New York, Academic Press

    MATH  Google Scholar 

  9. Friedan D., Martinec E., Shenker S. (1986) Conformal invariance, supersymmetry and string theory. Nucl. Phys. B271, 93–165

    ADS  MathSciNet  Google Scholar 

  10. Li H. Local systems of vertex operators, vertex superalgebras and modules. http://arxiv.org/list// hep-th/9406185, 1994

  11. Lian B., Linshaw A. Chiral equivariant cohomology I. http://arxiv.org/list// math.DG/0501084, 2005, to appear in Adv. Math.

  12. Lian B., Zuckerman G.J. (1993) New perspectives on the BRST-algebraic structure of string theory. Commun. Math. Phys. 154, 613–646

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Lian B., Zuckerman G.J. (1995) Commutative quantum operator algebras. J. Pure Appl. Alg. 100(1–3): 117–139

    Article  MATH  MathSciNet  Google Scholar 

  14. Lian B. Lecture notes on circle algebras. Preprint, 1994

  15. Kac V. G.: Vertex Algebras for Beginners. AMS Univ. Lecture Series, 10, 2nd corrected ed., Prividence, RI: Amer. Math. Soc., 2001

  16. Moore G., Seiberg N. (1989) Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177–254

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Linshaw.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linshaw, A.R. The Cohomology Algebra of the Semi-Infinite Weil Complex. Commun. Math. Phys. 267, 13–23 (2006). https://doi.org/10.1007/s00220-006-0062-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0062-9

Keywords

Navigation